Mobile Phone (Cell Phone) Base Stations and Human Health


Summary: This FAQ addresses the issue of whether base station transmitter/antennas for mobile phones (cellular phones, PCS phones), and other types of portable transceivers are a risk to human health.
Version: 8.0
Author: John Moulder, Professor of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisc, U.S.A.
Address: jmoulder at mcw dot edu


WARNING:
This document is no longer being actively maintained.
Last complete update: 3-Apr-2005
Last update of "What's New": 14-Aug-2006



 

Table of Contents

  1. What are mobile phone base stations; and are there health hazards associated with living, working, playing, or going to school near one?
  2. Are scientists seriously concerned about possible health risks from mobile phone base station antennas?
  3. Do the differences between cell phones, PCS phones, analog phones, digital phones and other types of mobile phones matter when evaluating the potential impacts of base station antennas on human health?
  4. Do the differences between mobile phone base station antennas and other types of radio and TV broadcast antennas matter when evaluating their potential impacts on human health?
  5. Do mobile phone base station antennas produce radiation?
  6. Is the RF energy from mobile phone base station antennas similar to ionizing radiations such as X-rays?
  7. Is the RF energy from mobile phone base station antennas similar to the "EMF" produced by power lines?
  8. Are there safety guidelines for mobile phone base station antennas?
  9. Is there a scientific basis for these RF energy safety guidelines?
  10. Are all RF energy safety guidelines the same?
  11. Does the U. S. have safety guidelines for mobile phone base stations?
  12. Can mobile phone base station antennas meet the safety guidelines?
  13. Are there circumstances where mobile phone base station antennas could fail to meet the safety guidelines?
  14. What siting criteria are required to ensure that a mobile phone base station antenna will meet safety guidelines?
    1. What are some general siting criteria?
    2. What are the differences between a high-gain antenna and a low-gain antenna?
    3. What do the phrases "antenna gain", "transmitter power" and "effective radiated power (ERP)" mean?
    4. What is the difference between the RF patterns for high-gain and low-gain antennas?
    5. Is it safe to live or work on the top floor of a building that has a mobile phone base station antenna on it?
    6. Are use restrictions or "set-backs" required around mobile phone base station antenna sites and what is the "minimum safe distance"?
    7. What precautions need to be taken when working around mobile phone base station antennas?
    8. How do you assess compliance with RF energy guidelines for mobile phone base stations?
  15. What are other scientists, scientific organizations and governmental review groups saying about RF energy and the safety of mobile phones base stations?
    1. The U. S. Environmental Protection Agency and the current RF energy safety guidelines.
    2. Claims on British, American and French TV that there is new data suggesting that mobile phones might cause cancer.
    3. What did expert scientific panels in the United Kingdom say about the safety of mobile phone base stations.
    4. What did an expert scientific panel in Canada say about the safety of mobile phone base stations.
    5. What did expert scientific panels in the United States say about the safety of mobile phone base stations.
    6. What did an expert scientific panel in the Netherlands say about the safety of mobile phone base stations.
    7. What did an expert scientific panel in France say about the safety of mobile phone base stations.
    8. What did an expert scientific panel in Australia say about the safety of mobile phone base stations.
    9. What did expert groups in Denmark, Finland, Iceland, Norway and Sweden say about the safety of mobile phone base stations.
  16. Are there epidemiological studies showing that exposure to RF energy from base stations is safe?
    1. Geographic correlation studies
    2. Cancer cluster studies
    3. Occupational exposure studies
    4. Microwaves and the US Embassy in Moscow
    5. Studies of exposure to mobile phone RF energy
    6. Reviews of the epidemiology
  17. Could the pulse-modulated RF energy used in mobile telecommunications produce different effects than the continuous-wave (CW) RF energy used in many laboratory studies?
  18. Are there groups (such as children or the elderly) that are more sensitive to the effects of RF energy?
  19. Will mobile phone base station antennas affect heart pacemakers, cause headaches, etc?
    1. Will mobile phone base station antennas affect medical devices such as cardiac pacemakers?
    2. Do mobile phones or mobile phone base stations cause headaches?
    3. Does RF energy from mobile phones or mobile phone base stations cause physiological or behavioral changes?
  20. Can RF energy produce biological effects?
  21. Is there any replicated evidence that RF energy can cause cancer?
  22. Is there any evidence that RF energy can cause miscarriages or birth defects?
  23. What do the most recent scientific laboratory studies of RF energy and cancer show?
    1. The 1997 report that exposure of mice to mobile phone RF energy causes lymphoma.
    2. Studies in which rodents were exposed to mobile phone RF energy for long periods of time.
    3. The 1995/1996 reports that exposure of animals to mobile phone RF energy causes DNA damage to their brain cells.
    4. The 2004 report from the European Union suggesting that mobile phone RF energy is genotoxic (the REFLEX report).
  24. Does the human body produce more RF energy than a person would get near a mobile phone base station?
  25. Where can I get more information?
  26. Who wrote these Questions and Answers?

 


What's New

This section summarizes relevant material published between 3-Apr-05 and 14-Aug-06.

  • Governmental reports and academic reviews:
    • A World Health Organization Conference concluded that: "There was a consensus that, from present knowledge, the ICNIRP [1998] guidelines appear to incorporate sufficient safety factors in their general public limits to be protective of children... However, given the uncertainty about effects in children, the use of measures that reduce their exposure, in addition to the adoption of international standards, seems appropriate."
      - M Repacholi, R Saunders et al: Is EMF a potential environmental risk for children? Bioelectromag Suppl 7:S2-S4, 2005.
    • In an update of their 1999 report [68 and Q15D], the Royal Society of Canada concluded: "All of the authoritative reviews completed within the last two years have concluded that there is no clear evidence of adverse health effects associated with RF fields."
      - D Krewski, CV Byus et al, Recent advances in research on radiofrequency fields and health: 2001-2003. The Royal Society of Canada, Ottawa, 2004.
    • A review of the evidence on mobile phones, mobile phones base stations, and brain cancer that was co-authored by the author of this FAQ concludes that "a weight-of-evidence evaluation shows that the current evidence for a causal association between cancer and exposure to RF energy is weak and unconvincing."
      - JE Moulder, KR Foster, LS Erdreich, JP McNamee: Mobile phones, mobile phone base stations, and cancer: A review. Int J Rad Biol 81:189-203, 2005.
    • The Health Council of the Netherlands "sees no reason to recommend limiting the use of mobile phones by children."
      - E van Rongen, EW Roubos et al: Mobile phones and children: Is precaution warranted? Bioelectromag 25:142-144, 2004.
    • A French expert group previously concluded that there was "an absence of health effects due to waves emitted from base stations." Their 2004 update concludes that "More recent scientific data do not cause this conclusion to be called into question... " and that "the increased density of base stations in conglomerations does not increase the level of electromagnetic fields, rather the contrary."
      - Afsse Opinion on Mobile Telephony. Maisons-Alfort, Agence française de sécurité sanitaire environnementale, 2005.
    • A review of the literature on "electromagnetic hypersensitivity" concludes that the symptoms "can be severe", but that the syndrome appears to be "unrelated to the presence of electromagnetic fields".
      - GJ Rubin, J Das Munshi et al: Electromagnetic hypersensitivity: a systematic review of provocation studies. Psychosomat Med 67:224-232, 2005.
    • A review of the scientific basis for the US RF exposure guidelines.
      - MC Ziskin: The IEEE exposure limits for radiofrequency and microwave energy. IEEE Eng Med Biol Mar/Apr:114-121, 2005.
  • Epidemiology and experimental human studies:
    • Exposure to RF energy from cordless phone base stations had no effect on the incidence of brain tumors.
      - J Schüz, E Böhler et al: Radiofrequency electromagnetic fields emitted from base stations of DECT cordless phones and the risk of glioma and meningioma (Interphone Study Group, Germany). Rad Res 166:116-119, 2006.
    • In 2003 Zwamborn et al [176] reported that exposure of human volunteers to RF energy under "base station-like" conditions had effects on "well being". An independent attempt to confirm this found no evidence for any such effects.
      - SJ Regel, S Negovetic et al: UMTS base station-like exposure, well being and cognitive performance. Environ Health Perspec on-line (6-Jun-2006)2006.
    • Five more analyses of cancer incidence in users of mobile phones and cordless phones from Hardell and colleagues. It is not entirely clear whether these are new studies or further reanalyses of the previously reported studies (see Q16E).
      - L Hardell, M Carlberg et al: Use of cellular telephones and brain tumour risk in urban and rural areas. Occup Environ Med 62:390-394, 2005;
      - L Hardell, M Carlberg et al: Case-control study on cellular and cordless telephones and the risk for acoustic neuroma or meningioma in patients diagnosed 2000-2003. Neuroepidemiol 25:120-128, 2005;
      - L Hardell, M Eriksson et al: Use of cellular or cordless telephones and the risk for non-Hodgkin's lymphoma. Int Arch Occup Environ Health 78:625-632, 2005;
      - L Hardell, M Carlberg et al: Pooled analysis of two case-control studies on use of cellular and cordless telephones and the risk for malignant brain tumours diagnosed in 1997-2003. Int Arch Occup Environ Health on line (16-Mar-06).
      - L Hardell, M Carlberg et al: Pooled analysis of two case-control studies on use of cellular and cordless telephones and the risk for benign brain tumours diagnosed in 1997-2003. Int J Oncol 28:509-518, 2006.
    • Preece and colleagues [66] reported in 1999 that exposure of human volunteers to mobile phone RF energy caused changes in reaction time; Hamblin and colleagues [197] reported a similar effect in 2004. Now the same groups, plus additional independent groups, report that they can find no such effects in children and adults.
      - AW Preece, S Goodfellow et al: Effect of 902 MHz mobile phone transmission on cognitive function in children. Bioelectromag Suppl 7:S138-S143, 2005;
      - C Haarala, M Bergman et al: Electromagnetic field emitted by 902 MHz mobile phones shows no effects on children's cognitive function. Bioelectromag Suppl 7:S144-S150, 2005;
      - R Russo, E Fox et al: Does acute exposure to mobile phones affect human attention? Bioelectromag 27:215-220, 2006;
      - DL Hamblin, RJ Croft et al: The sensitivity of human event-related potentials and reaction time to mobile phone emitted electromagnetic fields. Bioelectromag 27:265-273, 2006.
    • No increase in mortality in Belgians who were in close contact with RF energy from military radar.
      - E Degrave, P Autier et al: All-cause mortality among Belgian military radar operators: a 40-year controlled longitudinal study. Eur J Epidemiol 20:677-681, 2005.
    • A Danish study found no association between use of mobile phones and risk for glioma or meningioma.
      - HC Christensen, J Schüz et al: Cellular telephones and risk for brain tumors - A population-based, incident case-control study. Neurology 64:1189-1195, 2005.
    • Pooled data from six countries found that "there is no substantial risk of acoustic neuroma in the first decade after starting mobile phone use".
      - MJ Schoemaker, AJ Swerdlow et al: Mobile phone use and risk of acoustic neuroma: results of the Interphone case-control study in five North European countries. Brit J Cancer 93:842-848, 2005.
    • A study of human volunteers found that mobile phone use had no effect on visual function.
      - G Schmid, C Sauter et al: No influence on selected parameters of human visual perception of 1970 MHz UMTS-like exposure. Bioelectromag 26:243-250, 2005.
  • Animal studies:
    • Mobile phone RF energy did not promote (increase the incidence of) any kind of chemically-induced cancer in rats or mice.
      - P Heikkinen, H Ernst et al: No effects of radiofrequency radiation on 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone induced tumorigenesis in female Wistar rats. Rad Res 166: 397-408, 2006.
      - BC Zook and SJ Simmens: The effects of pulsed 860 MHz radiofrequency radiation on the promotion of neurogenic tumors in rats. Rad Res 165:608-615, 2006.
      - TQ Huang, JS Lee et al: Effect of radiofrequency radiation exposure on mouse skin tumorigenesis initiated by 7,12-dimethybenz[α]anthracene. Int J Rad Biol 81: 861-867, 2005
    • One report claimed that exposure of mice to mobile phone RF energy caused DNA damage in their brain cells, a second study found no evidence for any such effect.
      - R Paulraj and J Behari: Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mut Res 596:76-80, 2006.
      - IY Belyaev, CB Koch et al: Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromag 27:295-306, 2006.
    • Exposure to mice to mobile phone RF energy did not have any effect on the function of their immune cells.
      - F Nasta, MG Prisco et al: Effects of GSM-modulated radiofrequency electromagnetic fields on B-cell peripheral differentiation and antibody production. Rad Res 165:664-670, 2006.
    • Exposure to mice to mobile phone RF energy did not enhance genotoxic damage caused by a chemical genotoxin.
      - L Verschaeve, P Heikkinen et al: Investigation of co-genotoxic effects of radiofrequency electromagnetic fields in vivo. Rad Res 165:598-607, 2006.
    • Exposure of mice to mobile phone RF energy did not cause any significant changes in cell proliferation, apoptosis, or stress response.
      - JS Lee, TQ Huang et al: Subchronic exposure of hsp70.1-deficient mice to radiofrequency radiation. Int J Rad Biol 81:781-792, 2005.
    • Exposure of mice to mobile phone RF energy did not cause DNA damage in bone morrow or white blood cells.
      - BD Görlitz, M Müller et al: Effects of 1-week and 6-week exposure to GSM/DCS radiofrequency radiation on micronucleus formation in B6C3F1 mice. Rad Res 164:431-439, 2005.
    • In 2000 dePomerai and colleagues reported that low-intensity exposure of worms to RF energy caused a heat shock response without causing actual heating. In 2006 the same group reported that most, if not all, of the reported effect was actually due to heating.
      - AS Dawe, B Smith et al: A small temperature rise may contribute towards the apparent induction by microwaves of heat-shock gene expression in the nematode Caenorhabditis Elegans. Bioelectromag 27:88-97, 2006.
    • A previous report that exposure to RF energy affected memory function in mice failed a second independent confirmation attempt.
      - B Cosquer, N Kuster et al: Whole-body exposure to 2.45 GHz electromagnetic fields does not alter 12-arm radial-maze with reduced access to spatial cues in rats. Behav Brain Res 161:331-334, 2005.
  • Cellular studies:
    • Exposure of cultured cells to non-thermal levels of mobile phone RF energy had no statistically-significant effect on gene expression.
      - V Chauhan, A Mariampillai et al: Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Int J Rad Biol 82:347-354, 2006;
      - TD Whitehead, EG Moros et al: Gene expression does not change significantly in C3H 10T1/2 cells after exposure to 847.74 CDMA or 835.62 FDMA radiofrequency radiation. Rad Res 165:626-635, 2006;
      - SS Qutob, V Chauhan et al: Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field. Rad Res 165:636-644, 2006.
    • Exposure to non-thermal RF energy had no effect of various types of cells function of a wide variety of cells types.
      - H Tuschl, W Novak et al: In vitro effects of GSM modulated radiofrequency fields on human immune cells. Bioelectromag 27:188-196, 2006.
      - Y Takashima, H Hirose et al: Effects of continuous and intermittent exposure to RF fields with a wide range of SARs on cell growth, survival, and cell cycle distribution. Bioelectromag 27:392-400, 2006.
      - P Merola, C Marino et al: Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field. Bioelectromag 27:164-171, 2006.
      - AC Green, IR Scott et al: An investigation of the effects of TETRA RF fields on intracellular calcium in neurones and cardiac myocytes. Int J Rad Biol 81:869-885, 2005.
      - V Joubert, P Leveque et al: Microwave exposure of neuronal cells in vitro: Study of apoptosis. Int J Rad Biol 82:267-275, 2006.
    • A few studies reported that exposure of cultured cells to mobile phone RF energy caused DNA damage in some assays.
      - L Zotti-Martelli, M Peccatori et al: Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation. Mut Res 582:42-52, 2005;
      - E Diem, C Schwarz et al: Non-thermal DNA breakage by mobile-phone radiation (1800MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mut Res 583:178-183, 2005.
    • Many other studies reported that exposure of cultured cells to mobile phone RF energy did not cause DNA damage.
      - O Zeni, M Romano et al: Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vitro exposure to 900 MHz radiofrequency fields. Bioelectromag 26:258-265, 2005;
      - N Sakuma, Y Komatsubara et al: DNA strand breaks are not induced in human cells exposed to 2.1425 GHz band CW and W-CDMA modulated radiofrequency fields allocated to mobile radio base stations. Bioelectromag 27:51-57, 2006;
      - Y Komatsubara, H Hirose et al: Effect of high-frequency electromagnetic fields with a wide range of SARs on chromosomal aberrations in murine m5S cells. Mut Res 587:114-119, 2005;
      - NK Chemeris, AB Gapeyev et al: Lack of direct DNA damage in human blood leukocytes and lymphocytes after in vitro exposure to high power microwave pulses. Bioelectromag 27:197-203, 2006;
      - MR Scarfì, AM Fresegna et al: Exposure to radiofrequency radiation (900 MHz, GSM signal) does not affect micronucleus frequency and cell proliferation in human peripheral blood lymphocytes: an interlaboratory study. Rad Res 165:655-663, 2006;
      - L Stronati, A Testa et al: 935 MHz cellular phone radiation. An in vitro study of genotoxicity in human lymphocytes. Int J Rad Biol 82:339-346, 2006.
    • Mobile phone RF energy had no effect on the blood-brain barrier in an vitro model.
      - H Franke, J Streckert et al: Effects of Universal Mobile Telecommunications System (UMTS) electromagnetic fields on the blood-brain barrier in vitro. Rad Res 164:258-269, 2005;
      - H Franke, EB Ringelstein et al: Electromagnetic fields (GSM 1800) do not alter blood-brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromag 26:529-535, 2005.
    • Exposure of cultured cells to mobile phone RF energy did not induce a stress response.
      - A Laszlo, EG Moros et al: The heat-shock factor is not activated in mammalian cells exposed to cellular phone frequency microwaves. Rad Res 164:163-172, 2005;
      - J Miyakoshi, K Takemasa et al: Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromag 26:251-257, 2005;
      - M Lantow, J Schuderer et al: Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation. Rad Resh 165:88-94, 2006;
      - V Chauhan, A Mariampillai et al: Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Int J Rad Biol 82:347-354, 2006.
  • Dosimetry and biophysical studies:
    • A survey of public exposure to RF energy from mobile telephone base station antennas in five Australian cities found that exposure levels were: "well below the general public exposure limits of the ICNIRP guidelines... The highest recorded level from a single base station was... 0.2% of the general public exposure limit".
      - SI Henderson and MJ Bangay: Survey of RF exposure levels from mobile telephone base stations in Australia. Bioelectromag 27:73-76, 2006.
    • Twenty-four hour exposure assessment carried out in children, adolescents, and adults with a portable RF dosimeter prototype found that: "Self-reported exposures were not associated with dosimetry readings:.
      - K Radon, H Spegel et al: Personal dosimetry of exposure to mobile telephone base stations? An epidemiologic feasibility study comparing the Maschek dosimeter prototype and the Antennessa SP-090 system. Bioelectromag 27:77-81, 2006.

 


Questions and Answers

1) What are mobile phone base stations; and are there health hazards associated with living, working, playing, or going to school near one?

Mobile phone base stations are low-power multi-channel two-way radios. A mobile phone (cell phone) is a low-power, single-channel, two-way radio. When you talk on such a mobile phone, you (and perhaps dozens of other people around you) are talking to a nearby base station. From that base station your phone call goes into the regular land-line phone system.

Because mobile phones and their base stations are two-way radios, they produce radio-frequency (RF) energy (that's how they communicate), and they expose people near them to RF energy. However, because both the phones and the base stations are low power (short range), the RF energy exposure levels from them are generally very low.

The consensus of the scientific community, both in the US and internationally, is that the power from these mobile phone base station antennas is far too low to produce health hazards as long as people are kept away from direct access to the antennas (see Q13 and Q14).

It is critical to be aware of the difference between antennas, the objects that produce RF energy; and towers or masts, the structures that the antennas are placed on. It is the antennas that people need to keep their distance from, not the towers that hold the antennas.

It is also important to be aware that there are many different designs of mobile phone base stations that vary widely in their power, their characteristics, and their potential for exposing people to RF energy.


2) Are scientists seriously concerned about possible health risks from mobile phone base station antennas?

Not really. There are some reasons to be concerned about human health effects from the hand-held mobile (cellular) phones themselves (although it is not certain that any risks to human health actually exist). These concerns exist because the antennas of these phones deliver much of their RF energy to very small volumes of the user's body [61]. Base station antennas do not create such "hot spots" (unless you are standing directly in front of one), so the potential safety issues concerning the phones have no real applicability to the base station antennas.

For further discussion of health issues related to hand-held mobile phones see:

  • JE Moulder, KR Foster, LS Erdreich, JP McNamee: Mobile phones, mobile phone base stations, and cancer: A review. Int J Rad Biol 81:189-203, 2005.
  • the 1999 and 2000 reviews by Moulder and colleagues [64, 86]
  • the 2000-2001 review by the Royal Society of Canada [68]
  • the 2000 report of the UK Independent Expert Group on Mobile Phones (the "Stewart Commission") [84]
  • the 2001 IEEE position paper [21]
  • the 2001 review from the World Health Organization [109]
  • the 2001 review from American Cancer Society [107]
  • the constantly updated US FCC/FDA website [128]
  • the 2002 report from the Health Council of the Netherlands [124]
  • the 2004 review by Kundi [202]
  • the reviews from the UK NRPB in 2003-2005 [187, 200, 217, 229]

3) Do the differences between cell phones, PCS phones, analog phones, digital phones and other types of mobile phones matter when evaluating the potential impacts of base station antennas on human health?

No. There are many technical differences between different types of "mobile" phones [1, also see international note 1]; but for evaluation of possible health hazards, the only distinction that matters is that they operate at slightly different frequencies. The RF energy from some base stations (e.g., those for the older 800 MHz mobile phones used in the U.S.) may be absorbed by humans somewhat more than the RF energy from other types of base stations (e.g., those for the 1800-2000 MHz "PCS" phones used in the U.S.) [18]. However, once the energy is absorbed the effects are the same.


4) Do the differences between base station antennas and other types of radio and TV broadcast antennas matter when evaluating their potential impacts on human health?

Yes and no. The RF energy from some antennas (particularly FM and VHF-TV broadcast antennas) are absorbed more by humans than the RF energy from other sources (such as mobile phone base station antennas); but once the energy is absorbed the effects are basically the same.

FM and TV antennas send out 100 to 5000 times more power than base station antennas, but are usually mounted on much higher towers (typically 800-1200 ft or 250-400 meters).


5) Do mobile phone base station antennas produce radiation?

Yes. Mobile (cellular) phones and their base station antennas are two-way radios, and produce radiofrequency (RF) energy; that's how they work. This RF energy is "non-ionizing", and its biological effects are fundamentally different from the "ionizing" radiation produced by x-ray machines [see Q6].

This RF energy can also be called microwaves, radiowaves, RF radiation (RFR) or RF emissions. For the discussion of health effects the distinction between radiowaves and microwaves is semantic; and the term "RF energy" or just "RF" is used in this document for all frequencies between 3 kHz and 300 GHz.


6) Is the RF energy from mobile phone base station antennas similar to ionizing radiations such as X-rays?

No. The interaction of electromagnetic energy with biological material (cells, laboratory animals or humans) depends on the frequency of the source [41]. X-rays, RF energy and "EMF" from power lines are all produced by electromagnetic sources, but the frequencies of their sources are very different. The frequency is the rate at which the electromagnetic field changes direction and is given in Hertz (Hz), where one Hz is one cycle (wave) per second, and 1 megahertz (MHz) is one million cycles (waves) per second.

Electric power in the US is at 60 Hz. AM radio has a frequency of around 1 MHz (1 MHz = 1,000,000 Hz), FM radio has a frequency of around 100 MHz, microwave ovens have a frequency of 2450 MHz, and X-rays have frequencies above one million MHz. Cellular (mobile) phones operate at a variety of frequencies between about 800 and 2200 MHz [also see international note 1].

At the extremely high frequencies characteristic of X-rays, electromagnetic particles have sufficient energy to break chemical bonds (ionization). This is how X-rays damage the genetic material of cells, potentially leading to cancer or birth defects. At lower frequencies, such as those used by mobile phones and their base stations, the energy of the particles is much too low to break chemical bonds. Thus RF energy is "non-ionizing". Because non-ionizing radiation cannot break chemical bonds, there is no similarity between the biological effects of ionizing radiation (x-rays) and RF energy [41].

 

The Electromagnetic Spectrum

The Electromagnetic Spectrum

7) Is the RF energy from mobile phone base station antennas similar to the "EMF" produced by power lines?

No. Power lines produce no significant non-ionizing radiation, they produce electric and magnetic fields. In contrast to non-ionizing radiation, these fields do not radiate energy into space, and they cease to exist when power is turned off. It is not clear how, or even whether, power line fields produce biological effects; but if they do, it is not in the same way that high power RF energy produces biological effects [2, 41]. There appears to be no similarity between the biological effects of power line "EMF" and the biological effects of RF energy.


8) Are there safety guidelines for mobile phone base station antennas?

Yes. There are national and international safety guidelines for exposure of the public to the RF energy produced by mobile phone base station antennas. The most widely accepted standards are those developed by the Institute of Electrical and Electronics Engineers and American National Standards Institute (ANSI/IEEE) [3, 185b], the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [4], and the National Council on Radiation Protection and Measurements (NCRP) [5].

These RF standards are expressed in "plane wave power density", which is measured in mW/cm-sq (milliwatts per square centimeter) [6, 185b]. For base stations that operate in the 1800-2000 MHz range (for example, PCS base stations in the USA), the 1999 ANSI/IEEE exposure standard for the general public is 1.2 mW/cm-sq. For antennas that operate around 900 MHz (for example, base stations for analog phones in the USA), the ANSI/IEEE exposure standard for the general public is 0.57 mW/cm-sq [7]. The ICNIRP standards are slightly lower and the NCRP standards are essentially identical [8].

In 1996 the U.S. Federal Communications Commission (FCC) released RF guidelines for the frequencies and devices they regulate, including mobile phone base station antennas [9]. The FCC standards for mobile phone base station antennas are essentially identical to the ANSI/IEEE standard [3].

The public exposure standards apply to power densities averaged over relatively short periods to time, 30 minutes in the case of the ANSI/IEEE, NCRP, and FCC standards (at mobile phone frequencies). Where there are multiple antennas, these standards apply to the total power density produced by all antennas [11].

Also see international note 10 and Erdreich and Klauenberg [108].


9) Is there a scientific basis for these RF energy safety guidelines?

Yes. When scientists have examined all the published literature on the biological effects of RF energy they found that the literature agreed on a number of key points [see 3, 4, 5, 41, 92, 61, 62, 64, 65, 68, 108, 143, 151, 168, 170, 185a, 195, 200, 209, 217, 219, 229 for details]:

  1. Exposure to RF energy can be hazardous if the exposure is sufficiently intense. Possible injuries include cataracts [185i], skin burns, deep burns, heat exhaustion [185c] and heat stroke [185c]. See Reeves [83] and Adair and Black [185c] for a discussion of the known effects of overexposure to RF energy in humans.
  2. Biological effects of RF energy depend on the rate of energy absorption [6]; and within a broad range of frequencies (1 to 10,000 MHz), the frequency matters very little.
  3. Biological effects of RF energy are proportional to the rate of energy absorption; and the duration of exposure matters very little [65].
  4. No biological effects have been consistently shown below a certain rate of whole body energy absorption (this rate is called the specific absorption rate or SAR) [12].

Based on this scientific consensus, different agencies and countries took different approaches to setting safety guidelines. A typical approach was that used by ANSI/IEEE [3, 185b] and ICNIRP [4]:

  • They reviewed the scientific literature to find the lowest energy absorption rate (SAR) that consistently showed potentially-harmful biological effects.
  • To establish occupational exposure guidelines, they applied a 10-fold safety margin to that SAR.
  • They then applied an additional 5-fold safety margin to establish guidelines for continuous exposure of the general public.
  • Finally, detailed engineering and physics studies were done to establish the relationship of power density, which can be routinely measured, to the energy absorption rate (SAR), which really matters [6].
  • The result was a highly conservative public exposure guideline that was set at a level that is only 2% of the level where potentially-harmful biological effects have actually been demonstrated.

10) Are all RF energy safety guidelines the same?

No. There are differences between the standards. ANSI/IEEE, ICNIRP and FCC all use the same general approach to setting safety guidelines. However, there are differences in the physics (dosimetry) models used by the different groups, and hence there are slight differences in the final numbers [13, 108, 185b].

A number of countries have their own regulations for public exposure to RF energy from mobile phone base station antennas. While most of these regulation follow the same patterns and rationales used by ANSI/IEEE [3] and ICNIRP [4], they do differ. See International note 10 and Erdreich and Klauenberg [108] for details.

Some countries (e.g., Switzerland and Italy) have adopted regulations for public exposure to RF energy that are dramatically lower than the ANSI/IEEE [3] and ICNIRP [4] guidelines. In general these lower numbers are based on political considerations rather than on different interpretations of the science.


11) Does the U. S. have safety guidelines for mobile phone base stations?

Yes. Until 1996 the U. S. Federal Communications Commission (FCC) used an 1982 version of the IEEE/ANSI standard. In 1996 the FCC adopted a new standard [9] that was based on a combination of the 1992 ANSI/IEEE [3, 185b] and the 1986 NCRP guidelines [5].

The 1996 FCC standard for mobile phone base stations is 0.57 mW/cm-sq at 900 MHz and 1.0 mW/cm-sq at 1800-2000 MHz. This 1996 FCC standard now applies to all mobile phone base stations (and all other broadcast antennas), regardless of when they were licensed.

The FCC power-density standards described above apply to whole-body public exposure to RF energy from mobile phone base stations; they do not apply to exposure from the phones themselves or to occupational exposure. For a discussion of exposure from the phones or a discussion of occupational RF energy exposure see FCC OET Bulletin 56 [89], the FCC guideline itself [9], Foster and Moulder [86], Tell [77], and the documents references in Q2.


12) Can mobile phone base station antennas meet the safety guidelines?

Yes. With proper design, mobile phone base station antennas can meet all safety guidelines by a wide margin.

A mobile phone base station antenna, mounted 10 meters (33 ft) above publicly-accessible areas and operated at the maximum intensity, might produce a power density as high as 0.01 mW/cm-sq in publicly-accessible areas near the antenna site; but power densities in publicly-accessible areas will more often be in the 0.00001 to 0.0005 mW/cm-sq range [45, 60, 81, 85, 215]. These power densities are far below all the safety guidelines, and the standards themselves are set far below the level where potentially hazardous effects have been seen.

Within about 200 meters (650 ft) of the base of the antenna site, the power density may be greater at elevations above the base of the antenna site (for example, at the second floor of a building or on a hill). Even with multiple antennas on the same tower, power densities should be less than 5% of the FCC guidelines at all heights and at all distances of more than 40 meters (130 ft) from an antenna site.

Further than about 200 meters (650 ft) from the antenna site power density does not rise with increased elevation.

Power density inside a building will be lower by a factor of 3 to 20 than outside [42, 85].

Petersen et al [60] measured power densities around mobile phone base stations. The measurements were for antennas radiating 1600 W ERP (see Q14C for a discussion of antenna power) on towers that ranged from 40 to 83 meters (130 to 275 ft) in height. The maximum power density on the ground was 0.002 mW/cm-sq, and the maximum was at 20 to 80 meters (65-265 feet) from the base of the towers. Within 100 meters (330) feet of the base of the towers, the average power density was less than 0.001 mW/cm-sq. These maximum RF power densities are all less than 1% of the FCC, ANSI/IEEE and ICNIRP standards for public exposure.

In 1999 in Vancouver Canada, Thansandote et al [81] measured RF levels in five schools, three of which had base stations on them or near them. All schools met Canadian, US and international RF standards by a wide margin. The maximum readings are shown in the following table.

RF Energy Levels in Canadian Schools Near Mobile Phone Base Stations [81]
School Base Station Location Maximum RF Level
1 digital (PCS) base station across street 0.00016 mW/cm-sq
2 analog base station on roof 0.0026 mW/cm-sq
3 analog base station across street 0.00022 mW/cm-sq
4 and 5 no antennas nearby less than 0.00001 mW/cm-sq
  Canadian Standard less than 0.57 mW/cm-sq

In 2000, the U.K. National Radiation Protection Board [85] measured RF energy levels at 118 publicly-accessible sites around 17 mobile phone base stations. The maximum exposure at any location was 0.00083 mW/cm-sq (on a playing field 60 meters from a school building with an antenna on its roof). Typical power densities were less than 0.0001 mW/cm-sq (less than 0.01% of the ICNIRP public exposure guidelines). Power densities indoors were substantially less than power densities outdoors. When RF energy from all sources (mobile phone, FM radio, TV, etc.) was taken into account the maximum power density at any site was less than 0.2% of the ICNIRP public exposure guidelines. Details are shown in the following figure.

 

RF Energy Levels Near Mobile Phone Base Stations in the UK

RF Energy Levels Near Mobile Phone Base Stations in the UK
The relationship between the RF power density and distance from the base of the tower or building on which the mobile phone base antenna was located. Data from Mann et al. [85]; adapted from Moulder et al (Int J Rad Biol 81:189-203, 2005).

In 2001, the Radiocommunications Agency of the UK Department of Trade and Industry measured RF energy levels at 100 schools that had mobile phone base stations on (or near) them. The maximum RF level measured at any school was less than 1% of the ICNIRP standard [4] for public areas; the maximum in most schools was less than 0.05% of that standard. The results of this audit are summarized in the figure below.

RF Energy Levels in Schools Near Mobile Phone Base Stations in the UK
(in comparison to the ICNIRP guidelines for public areas)

Maximum RF Energy Levels in Schools Near Mobile Phone Base Stations in the UK
Maximum RF energy levels (in comparison to the ICNIRP standard for public areas) in UK schools that have mobile phone base stations near them. Adapted from a 2001 report by the Radiocommunications Agency of the UK Department of Trade and Industry.

A 2000 survey of GSM base stations by the Australian Radiation Protection and Nuclear Safety Agency found that public exposures to RF energy were less than 0.1% of their standard [169]. The highest exposure level they found was less than 0.0002 mW/cm-sq (less than 0.01% of the ICNIRP public exposure guidelines), and the average exposure level was less than 0.0001 mW/cm-sq. At most of the 13 sites they measured, there were other types of RF signals that were more powerful than the base station signal (AM radio was more powerful in 12 cases, FM radio in 6 cases, and TV in 3 cases). At all sites measured the total RF energy from all sources combined (mobile phone base stations, AM radio, FM radio, VHF TV, UHF TV, paging) was less than 0.1% of the Australian (or the ICNIRP or FCC) RF safety guidelines.
The Australian report is on line at: http://www.arpansa.gov.au/pubs/eme_comitee/rfrep129.pdf

In 2001, Anglesio et al [215] reported that measurements of RF energy in buildings in a large town in northern Italy found that radio/TV signals were generally stronger than mobile phone (base plus handset) signals, and that all measurements showed power densities far below even the Italian safety standard (0.01 mW/cm-sq). The peak level was less than 0.003 mW/cm-sq.

The relationship between the RF levels required to produce known biological effects, the RF levels specified in the FCC, IEEE and ICNIRP safety guidelines, and the RF levels found around mobile phone base stations is shown in the following figure.

Standards for Mobile Phone Base Stations

Standards for Mobile Phone Base Stations
The relationship between the RF power density level required to produce known biological effects, the RF power density levels specified in the safety guidelines, and the RF power density levels actually measured around mobile phone base stations. Because the RF power density required to produce biological effects is dependent on frequency, this figure only applies to frequencies between 800 and 2200 MHz (that is, those currently used by mobile phones).

13) Are there circumstances where mobile phone base station antennas could fail to meet the safety guidelines?

Yes. There are some circumstances under which an improperly designed (or inadequately secured) mobile phone base station site could fail to meet safety guidelines.

Safety guidelines for uncontrolled (public) exposure could be exceeded if antennas were mounted in such a way that the public could gain access to areas within 8 meters/25 feet (horizontal) of the radiating surface(s) of the antennas themselves [14]. This could arise for antennas mounted on or near the roofs of buildings. For example, Petersen et al [60] found that 2-3 feet (1 meter) from a roof-top antenna radiating 1600 W ERP, the power density was as high as 2 mW/cm-sq (compared to the ANSI/IEEE [3] public exposure standard of 0.57-1.2 mW/cm-sq).

For antennas mounted on towers, it is somewhat difficult to imagine a situation that would not meet the safety guidelines. However, there are reports (principally from outside North America and Europe) of mobile phone base station antennas facing directly at nearby buildings. Whether these antennas would meet FCC, ANSI/IEEE or ICNIRP safety guidelines would depend on the ERP, the exact geometry and the degree of shielding provided by the building.


14) What siting criteria are required to ensure that a mobile phone base station antenna will meet safety guidelines?

While specific recommendations require a detailed knowledge of the site, the antenna, and the mounting structure, some general criteria can be described.


14A) What are some general siting criteria?

  1. Antenna sites should be designed so that the public cannot access areas that exceed the 1999 ANSI/IEEE [3] or FCC [Q11] guidelines for public exposure. As a general rule, the uncontrolled (public) exposure guideline cannot be exceeded more than 8 meters (25 feet) from the radiating surface of the antenna [14].
  2. If there are areas accessible to workers that exceed the 1999 ANSI/IEEE [3] or FCC [Q11] guidelines for uncontrolled (public) exposure, make sure workers know where the areas are, and what precautions need to be taken when entering these areas. In general, this would be areas less than 8 meters (25 feet) from the radiating surface of the antenna [14].
  3. If there are areas that exceed the 1999 ANSI/IEEE [3] or FCC [Q11] guidelines for controlled (occupational) exposure, make sure that workers know where these areas are, and that they can (and do) power-down (or shut down) the transmitters when entering these areas. Such areas may not exist; but if they do, they will probably be limited to areas within 3 meters (10 feet) of the antennas [14].

If there are questions about whether these guidelines are met, compliance should be verified by measurements done after the antennas are activated.

The FCC guidelines [9] require detailed calculations and/or measurement of RF energy for some types of base stations [15]. In June 2003, the FCC proposed some significant changes in these rules (see note 15).

Problems, when they exist, are generally confined to:

  • Antennas placed on the roofs of buildings; particularly where multiple base station antennas for different carriers are mounted on the same building;
  • Antennas placed on structures that require access by workers (both for regular maintenance, and for uncommon events such as painting or roofing). Note that the occupation safety standards for RF energy apply only to workers with appropriate RF energy safety training.
  • Towers that are placed very close to, and lower than, nearby buildings.

See international note 15.


14B) What are the differences between a high-gain antenna and a low-gain antenna?

There are many different types of base station antennas, and the RF energy patterns from them can be quite different. The most basic difference is between high-gain antennas and a low-gain antennas. Because siting and safety issues for high- and low-gain antennas are different, it is important to be able to tell them apart (see Q14B for a discussion of antenna gain). In the early days of mobile phones, you could usually tell by looking. Unfortunately, the development of newer antenna designs and the variety of different ways to stealth (hide) antennas now often makes it impossible to determine what kind of antenna has been installed just by looking,


14C) What do the phrases "antenna gain", "transmitter power" and "effective radiated power (ERP)" mean?

The power of a mobile phone base station is usually described by its effective radiated power (ERP) which is given in watts (W). Alternatively, the power can be given as transmitter power (in watts) and the antenna gain.

Transmitter power is a measure of total power, while ERP is a measure of the power in the main beam. If an antenna were omni-directional and 100% efficient, then transmitter power and ERP would be the same. But mobile phone base station antennas (like all antennas) are not omni-directional; they are moderately (low-gain antennas) to highly (high-gain antennas) directional. The fact that they are directional means that they concentrate their power in some directions, and give out much less power in other directions. Antenna gain is a measure of how directional an antenna is, and it is measured in decibels. Depending on the antenna gain, a 20-50 W base station transmitter could produce an ERP of anywhere from about 50 watts to over 1000 watts.

The concept of "gain" and "ERP" are best explained by analogy to light bulbs. Compare a regular 100 W light bulb to a 25 W spot light. The spot light has less total power than the regular light, but is much brighter when you are in its beam and much weaker when you are outside its beam. A mobile phone base antenna (particularly a high-gain sector antenna) is like the spot light, and ERP is equivalent to the effective power in the spot light's main beam.

For a more complete technical discussion of these issues see Section 2.2.11 of NCRP Report No. 119 [88].


14D) What is the difference between the RF patterns for high-gain and low-gain antennas?

The RF patterns for different types of antennas are very different. For a low-gain antenna with a 1000 W ERP (see Q14C for a discussion of antenna power and gain) of the type formerly used by many mobile phone base stations, the pattern can look like this:

RF Energy Levels from a 1000 W ERP Low-Gain Antenna on a 15 m Tower

RF Energy Levels from Low-Gain Antenna

 


For a high-gain (sector) antenna of the type used in many of the newer base stations, the pattern can look like this:

RF Energy Levels from a Single 1000 W ERP High-Gain Antenna Mounted 2 m above the Roof of a 13 m Building

RF Energy Levels from a High-Gain (Sector) Antenna

Keep in mind that mobile phone base station that use high-high-gain sectored antennas will usually use 3 (or occasionally 4) of these transmission antennas, all pointing in different directions.


14E) Is it safe to live or work on the top floor of a building that has a mobile phone base station antenna on it?

In general this will not be a problem.

  1. As can be seen from the antenna patterns shown in Q14D, neither high- or low-gain antennas radiate much energy straight down.
  2. The roof of the building will absorb large amounts of the RF energy. Typically a roof would be expected to decrease signal strength by a factor of 5 to 10 (or more for a reinforced concrete or metal roof).
  3. Even a worst-case calculation predicts that power density on the floor below an antenna will meet all current RF safety guidelines [43].
  4. Actual measurements in top floor apartments and corridors confirm the power density is far below all current RF safety guidelines [43].

14F) Are use restrictions or "set-backs" required around mobile phone base station antenna sites and what is the "minimum safe distance"?

RF safety guidelines do not require either setbacks or use restrictions around mobile phone base station antenna sites, since power levels on the ground should not (by definition) be high enough to exceed the guidelines for continuous public exposure (see Q8 and Q12).

As discussed in Q13 and Q14, there may be circumstances where use restrictions will have to be placed around the antennas themselves.

The "Minimum Safe Distance" from a mobile phone base antenna is described by the FDA/FCC [128] as follows:

"To be exposed to levels at or near the FCC limits for cellular or PCS frequencies an individual would essentially have to remain in the main transmitted radio signal (at the height of the antenna) and within a few feet from the antenna... In addition, for sector-type antennas RF levels to the side and in back are insignificant."

Note that the above quote about safe distances applies to the actual radiating antenna, not to the tower (or building or structure) the antenna is on. For a mobile phone base station antenna mounted on tower that is 5+ meters high, there should be no areas that will come anywhere close to the RF energy safety guidelines, so the concept of a "minimum safe distance" really doesn't mean anything.

Some people have argued that base stations should be kept some distance away from "sensitive" areas. There is little logic to this argument:

  1. As discussed in Q12 and documented in the 2000 NRPB report [85], the ground level power density does not drop with distance in any regular manner until you get at least several hundred meters away from a base station.
  2. People living, working or studying in a building usually get less exposure from a base station that is on their building than they would from a base station several hundred meters away (Q12 and Note 85).
  3. The antenna height, the antenna power and the antenna pattern are much bigger factors in determining ground level exposure to RF energy than the horizontal distance from a base station.

In addition, moving base antennas away from an area where there are mobile phone users may:

  1. Increase the exposure of the users from their handsets.
  2. Require the base antenna power to be increased.
  3. Require the base antennas to placed further above the ground.
  4. Increase the cell size and thus limit the number of users that can connect.

14G) What precautions need to be taken when working around mobile phone base station antennas?

A detailed discussion of RF energy occupational safety guidelines is beyond the scope of this FAQ.

In a detailed discussion of guidelines for telecommunications antenna installation, Tell [77] makes the following recommendations:

Specific Antenna Installation Guidelines (from Tell [77])

  1. For roof-mounted antennas, elevate the transmitting antennas above the height of people who may have to be on the roof.
  2. For roof-mounted antennas, keep the transmitting antennas away from the areas where people are most likely to be (e.g., roof access points, telephone service points, HVAC equipment).
  3. For roof-mounted directional antennas, place the antennas near the periphery and point them away from the building.
  4. Consider the trade off between large aperture antennas (lower maximum RF) and small aperture antennas (lower visual impact).
  5. Remember that RF standards are stricter for lower-frequency antennas (e.g., 900 MHz) than for higher-frequency antennas (e.g., 1800 MHz).
  6. Take special precautions to keep higher-power antennas away from accessible areas.
  7. Keep antennas at a site as far apart as possible; although this may run contrary to local zoning requirements.
  8. Take special precautions when designing "co-location" sites, where multiple antennas owned by different companies are on the same structure. This applies particularly to sites that include high-power broadcast (FM/TV) antennas. Local zoning often favors co-location, but co-location can provide "challenging" RF safety problems.

Work Practices for Reducing RF Energy Exposure (from Tell [77])

  1. Individuals working at antenna sites should be informed about the presence of RF energy, the potential for exposure and the steps they can take to reduce their exposure.
  2. "If radiofrequency radiation at a site can exceed the FCC standard for general public/uncontrolled exposures, then the site should be posted with appropriate signs." [Per Richard Tell, personal communication, Feb 2000]
  3. RF energy levels at a site should be modeled before the site is built.
  4. RF energy levels at a site should be measured.
  5. Assume that all antennas are active at all times.
  6. Disable (lock out) all attached transmitters before working on an antenna.
  7. Use personal monitors to ensure that all transmitters have actually been shut down.
  8. Keep a safe distance from antennas. "As a practical guide for keeping [RF energy] exposures low, maintain a 3-4 ft [1-1.2 m] distance from any [telecommunications] antenna." [77]
  9. "Keep on moving" and "avoid unnecessary and prolonged exposure in close proximity to antennas".
  10. At some site (e.g., multiple antennas in a restricted space where some antennas cannot be shut down) it may be necessary to use protective clothing.
  11. Remember that there are many non-RF hazards at most sites (e.g., dangerous machinery, electric shock hazard, falling hazard), so allow only authorized, trained personnel at a site.

Also see Bernardi et al [96] for an analysis of actual exposure levels to a person on a roof near a base station antenna.


14H) How do you assess compliance with RF energy guidelines for mobile phone base stations?

Compliance can be assessed through measurements or calculations. Both methods require a solid understanding of the physics of RF energy. Measurements require access to sophisticated and expensive equipment. Calculations require detailed knowledge about the power, antenna pattern and geometry of each antenna at a site.

Nothing as simple as distance from an antenna site is adequate for assessing compliance or estimating exposure levels [85, 113]. As discussed and illustrated in Q12, RF energy exposure may not even increase as you get closer to an mobile phone base station site.

Calculation: If the effective radiated power (ERP), the antenna pattern and the height of the base station antenna are known (see Q14C for a discussion of ERP and gain), then "worst case" calculations of ground level power density can be made. However, the calculation method is not simple and the ERP and antenna pattern are often unknown. See Barbiroli et al [162] for an example of how exact calculations can be made if all relevant technical specifications are known.

Measurement: Actual measurement of power density from mobile phone base stations requires sophisticated and expensive equipment and considerable technical knowledge. The instruments designed to measure power line fields and the instruments designed to test microwave ovens are not suitable for measuring base stations. Determining that base stations meet ANSI/IEEE, FCC, or ICNIRP guidelines is "relatively easy", but the instruments required cost well over US$ 2000. Actual measurement of the power-density from a base station antenna is much more difficult, as there are many other sources of RF energy at a typical site (see Mann et al [85] and Line et al [169]).

For a technical discussion of measurement techniques and instrumentation see Mann et al [85], NCRP Report No. 119 [88] and Line et al [169].


15) What are other scientists, scientific organizations and governmental review groups saying about RF energy and the safety of mobile phones base stations?

This section summarizes what other scientists, scientific organizations and governmental review groups have said about RF energy safety and mobile phone base stations.


15A) The U. S. Environmental Protection Agency and the current RF energy safety guidelines.

The EPA asked the FCC to adopt parts of the 1986 NCRP guidelines [5] rather than the entire 1999 ANSI/IEEE guidelines [3]. This the FCC did [9], and EPA has formally endorsed the FCC safety guidelines.

In a 30-April-1999 letter to the FCC, Robert Brenner (EPA Acting Deputy Assistant Administrator for Air and Radiation) stated:

"The FCC guidelines expressly take into account thermal effects of RF energy, but do not directly address postulated non-thermal effects, such as those due to chronic exposure. That is the case largely because of the paucity of scientific research on chronic, non-thermal health effects. The information base on non-thermal health effects has not changed significantly since the EPA's original comments in 1993 and 1996. A few studies report that at non-thermal levels, long term exposure to RF energy may have biological consequences. The majority of currently available studies suggests, however, that there are no significant non-thermal human health hazards. It therefore continues to be EPA's view that the FCC exposure guidelines adequately protect the public from all scientifically established harms that may result from RF energy fields generated by FCC licensees."

15B) Claims on British, American and French TV that there is new data suggesting that mobile phones might cause cancer.

In the summer and fall of 1999 (and repeated in 2000 and possibly in 2001), programs on British, American and French TV claimed that there was new data suggesting that RF energy from mobile phones could cause injury to humans. Four sources of "new" information were generally cited:

  1. An epidemiology study of mobile phone use and brain cancer by Hardell et al [69]. See Q16E for a detailed discussion of this study.
  2. A 1999 report by Preece et al [66] that exposure of human volunteers to mobile phone RF energy might decrease reaction times.
  3. A new and then unpublished genotoxicity study.
  4. A new and then unpublished epidemiology study.

The last two of these "new" studies were only vaguely described in the TV reports, but they appear to be references to studies sponsored by the mobile phone industry in the US (under the program called WTR).

The WTR epidemiology study was presented at a meeting in June of 1999, and has now been published in the peer-reviewed literature [91,127]. The published version reports no significant association between malignant [91] or benign [127] brain cancer and the use of hand-held mobile phones. See further discussion of the study in Q16E.

The WTR genotoxicity study was presented at a meeting in March of 1999 [71, 72]. Parts of this WTR study were published in early 2002 [121]. The published version [121] reports that RF energy at 5 or 10 W/kg was capable of causing a one specific type of genotoxic injury (increased micronucleus formation); but did not enhance DNA strand breaks. Vijayalaxmi et al [97], Bisht et al [130], McNamee et al [146, 147] and Koyama et al [186] have reported that they cannot replicate the micronucleus findings. The authors of the WTR genotoxicity study speculate that their reported effect on micronucleus formation may be due to heating.


15C) What did expert scientific panels in the United Kingdom say about the safety of mobile phone base stations.

In 2000, a special committee in the U.K., the Independent Expert Group on Mobile Phones (IEGMP, also known as the "Stewart Commission") issued a report on mobile phone safety issues [84]. The full text is available at: http://www.iegmp.org.uk/report/text.htm.

Follow-up reports were issued in 2003 [187], 2004 [200, 217] and 2005 [229] by the National Radiological Protection Board (NRPB). The full text of the 2003 report [187] is available at:
http://www.hpa.org.uk/radiation/publications/documents_of_nrpb/abstracts/absd14-2.htm
the 2004 reports [200, 217] are at:
www.hpa.org.uk/radiation/publications/documents_of_nrpb/abstracts/absd15-3.htm and www.hpa.org.uk/radiation/publications/documents_of_nrpb/abstracts/absd15-5.htm
and the 2005 report [229] is at:
http://www.hpa.org.uk/radiation/publications/w_series_reports/2005/nrpb_w65.htm

Note: The U.K. National Radiological Protection Board (NRPB) is now the Radiation Protection Division of the U.K. Health Protection Agency.

On the general issue of RF energy safety, the Expert Group concluded in 2000 that [84]:

"The balance of evidence to date suggests that exposures to RF energy below NRPB and ICNIRP [4] guidelines do not cause adverse health effects to the general population..."

In 2003, the U.K. Advisory Group on Non-Ionizing Radiation [187] concluded that:

"In aggregate the research published since the [2000] IEGMP report does not give cause for concern. The weight of evidence now available does not suggest that there are adverse health effects from exposures to RF fields below guideline levels, but the published research on RF exposures and health has limitations, and mobile phones have only been in widespread use for a relatively short time. The possibility therefore remains open that there could be health effects from exposure to RF fields below guideline levels; hence continued research is needed."

In 2004, the NRPB [217] reported that:

"The widespread development in the use of mobile phones world-wide has not been accompanied by associated, clearly established increases in adverse health effects. Within the UK, there is a lack of hard information showing that the mobile phone systems in use are damaging to health. It is important to emphasize this crucial point."

With respect to mobile phone base stations, the 2000 Expert Group concluded that [84]:

"The balance of evidence indicates that there is no general risk to the health of people living near to base stations on the basis that exposures are expected to be small fractions of guidelines."

In 2003, the U.K. Advisory Group on Non-Ionizing Radiation [187] concluded that:

"Exposure levels from living near to mobile phone base stations are extremely low, and the overall evidence indicates that they are unlikely to pose a risk to health."

In 2004, the NRPB [217] reported that:

"The [Office of Communications] measurements indicate that exposures of the public from macrocell base stations are small fractions of exposure guidelines... Similar conclusions on exposure levels have been reached by NRPB from surveys of around 60 base station sites. Exposures in proximity to picocells have been found to be no more than a few per cent of guidelines for the public."

With respect to RF energy and cancer, the the U.K. Advisory Group on Non-Ionizing Radiation [187] concluded that:

"The biological evidence suggests that RF fields do not cause mutation or initiate or promote tumour formation, and the epidemiological data overall do not suggest causal associations between exposures to RF fields, in particular from mobile phone use, and the risk of cancer,"

The 2005 report from the NRPB [229] is a review of 26 reviews done by other countries and scientific groups. It concludes that:

"Most of the 26 reports examined here have reached similar conclusions... Overall the reports acknowledge that exposure to low level RF fields may cause a variety of subtle biological effects... but the possibility of exposure causing adverse health effects remains unproven... Further, these reports stress that very low level exposures, typical of base stations, are extremely unlikely to cause any effects on biophysical grounds, whereas localized exposures, typical of those from mobile phones, may induce effects as a result of mild heating of superficial tissues close to the head."

15D) What did an expert scientific panel in Canada say about the safety of mobile phone base stations.

An Expert Panel assembled by the Royal Society of Canada issued a report on mobile phone safety in 1999 [68]. The report, and a 2004 update of the report are online at: http://www.rsc.ca/index.php?page=expert_panels_rf&lang_id=1&page_id=120.

Regarding mobile phone base stations, the Expert Panel concluded:

"Surveys conducted in proximity to base stations operating in Canada indicate that the public is exposed to extremely low intensity RF fields in the environment. These exposures are typically thousands of times lower than the recommended maximum exposure in Safety Code 6."

15E) What did expert scientific panels in the United States say about the safety of mobile phone base stations.

In 2001 the Institute of Electrical and Electronics Engineers (IEEE) published a statement on mobile phone base stations [22]. The report is on-line at: http://ewh.ieee.org/soc/embs/comar/base.htm.

The statement concluded that:

"In nearly all circumstances, public exposure to RF fields near wireless base stations is far below recommended safety limits... Consequently, wireless base stations are not considered to present a risk to the general population including aged people, pregnant women, and children"

In a website (http://www.fda.gov/cellphones/) that went on-line in May 2002, the US Food and Drug Administration and the Federal Communications Commission state that:

"The electromagnetic RF signals transmitted from base station antennas stations travel toward the horizon in relatively narrow paths... Therefore, RF exposure on the ground is much less than exposure very close to the antenna and in the path of the transmitted radio signal. In fact, ground-level exposure from such antennas is typically thousands of times less than the exposure levels recommended as safe by expert organizations. So exposure to nearby residents would be well within safety margins."
"Measurements made near cellular and PCS base station antennas mounted on towers have confirmed that ground-level exposures are typically thousands of times less than the exposure limits adopted by the FCC. In fact, in order to be exposed to levels at or near the FCC limits for cellular or PCS frequencies an individual would essentially have to remain in the main transmitted radio signal (at the height of the antenna) and within a few feet from the antenna..."
"When cellular and PCS antennas are mounted on rooftops, RF levels on that roof or on others near by would probably be greater than those typically encountered on the ground. However, exposure levels approaching or exceeding safety guidelines should be encountered only very close to or directly in front of the antennas..."

15F) What did an expert scientific panel in the Netherlands say about the safety of mobile phone base stations.

In 2002, the Health Council of the Netherlands issued a report on the safety of mobile phones [124]. The report is on-line at: http://www.gr.nl/pdf.php?ID=377.

On the general issue of mobile phone handset safety, the Health Council concluded that:

"The electromagnetic field of a mobile telephone does not constitute a health hazard, according to the present state of scientific knowledge."

With respect to mobile phone base stations, the Health Council reaffirmed their earlier (2000) conclusion [125] that:

"The chance of health problems occurring among persons living and working below bases stations as a result of exposure to electromagnetic fields originating from the antennas is, in the Committee's opinion, negligible. The field levels are always considerably below the exposure limits."

15G) What did an expert scientific panel in France say about the safety of mobile phone base stations.

In 2001, the Directeur Général de la Santé issued a report on the safety of mobile phones and their base stations (Les Téléphones Mobiles, leurs Stations de Base et la Santé) [118].

On the general issue of mobile phone handset safety, the French report concluded that:

"The risk of accident and fatality associated with the use of mobile telephones when driving has definitely been established. In the current state of knowledge, this is the only known health risk, albeit a very serious one."

With respect to mobile phone base stations, the report concluded that:

"There is considerably less personal exposure in the vicinity of base stations with the exception of exclusion areas than there is when making a call with a mobile phone...In view of the exposure levels observed, the group of experts does not back the hypothesis that there is a health risk for populations living in the vicinity of base stations."

15H) What did an expert scientific panel in Australia say about the safety of mobile phone base stations.

In a supplement to their 2002 RF energy protection standard [168] the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) discussed the safety of mobile phone base stations:

"Radiofrequency radiation (RFR) from mobile phone towers makes only a minor contribution to the total environmental RFR that arises primarily from other communications sources. Depending on location the RFR from mobile phone towers is generally less than 3% of all RFR from other contributing sources including AM and FM radio, television, paging systems and emergency services... Further, the exposure levels from all combined radiofrequency sources as measured adjacent to the mobile phone towers are generally much less than 2 microwatts per square centimeter [0.002 mW/cm-sq]. Such RFR levels are below 1% of the maximum allowable public exposure levels."

Elsewhere in that document ARPANSA discussed safety standards for public exposure to RF energy:

"Significant safety factors are incorporated into the exposure limits -- that is, the limits are set well below the level at which adverse health effects are known to occur. Current data does not establish the existence of adverse heath effects for exposure levels below the limits of the ARPANSA."

Note that with respect to public exposure to RF energy from mobile phone base stations the Australian standard is largely (if not completely) in agreement with the ICNIRP Guidelines.


15I) What did expert groups in Denmark, Finland, Iceland, Norway and Sweden say about the safety of mobile phone base stations.

In 2004, the Danish National Board of Health, the Radiation and Nuclear Safety Authority of Finland, the Icelandic Radiation Protection Institute, the Norwegian Radiation Protection Authority and Swedish Radiation Protection Authority issued a joint statement on "Mobile Telephony and Health" [209]. The statement is on-line at: http://www.ssi.se/ickejoniserande_stralning/mobiltele/NordicMobilPress2004.pdf

"The Nordic authorities agree that there is no scientific evidence for any adverse health effects from mobile telecommunication systems, neither from the base stations nor from the handsets, below the basic restrictions and reference values recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). However, certain knowledge gaps exist that justifies more research in this field. There are a number of published reports suggesting that biological effects may occur at exposure levels below the ICNIRP guidelines. These studies need to be reproduced and the scientific progress in these fields of research should be followed carefully. In this context, however, it is important to note that biological effects do not necessarily imply health hazard."
"The exposure to the general public from base stations is extremely low, normally 100 to 10 000 times lower than the ICNIRP guidelines and very much lower than the exposure from the handsets."
"It is uncertain if children and young people are more sensitive than adults to electromagnetic fields from mobile telephony, very few direct studies of this subject have been performed. A recent compilation by the Health Council of the Netherlands concludes that there is no scientific evidence that children are more sensitive to radio frequency radiation than adults and that no special restrictions for children are needed."

16) Are there epidemiological studies showing that exposure to RF energy from base stations is safe?

Yes and no. While there have been no epidemiology studies of cancer and mobile phone base stations, there have been epidemiology studies of cancer and other types of exposure to RF energy. For summaries, see:

  • the 2002 review by Boice and McLaughlin [143];
  • the 2003 review by Elwood [185e];
  • the 2003 review by Breckenkamp et al [194];
  • the 2003 review by the Swedish Radiation Protection Authority [195];
  • the 2004 review by ICNIRP [219].

Epidemiology studies of RF energy from base stations have generally been concluded to be "infeasible, as there is no possibility to estimate individual exposure accurately enough" [138].

In general, epidemiology studies of RF energy and cancer have not found significant correlations between exposure and cancer. The studies include:

  • geographic correlation studies that compare cancer rates among areas with different potential exposures to RF energy
  • "cancer cluster" studies
  • studies of cancer in people with military or occupational exposure to RF energy
  • users of hand-held mobile phones

16A) Geographic correlation studies

Geographic correlation studies estimate the strength of RF energy in geographic areas and correlate these estimates with disease rates in these areas. Even when the design of geographic correlation studies is optimal, they are considered exploratory and are not generally used for determining causality.

The geographical correlation studies done to date show no consistent relationship between exposure to RF energy and either adult of childhood cancer. See Elwood [63] for a detailed discussion of the earlier geographic correlation studies. The best known geographical correlation studies are those of cancer in people living near TV or radio broadcast towers.

  • 1996 and 2004: Hocking and colleagues [23] compared municipalities "near TV towers" to those further away. No RF energy exposures were actually measured, no other sources of exposure to RF are taken into account, and the study is based on only a single metropolitan area. The authors reported an elevated incidence of total leukemia and childhood leukemia, but no increase in total brain tumor incidence or childhood brain tumor incidence. In 2003, they also reported decreased survival in these childhood leukemia cases [213].
  • 1998: McKenzie and colleagues [46] repeated the Hocking study [23]. They looked at the same area, and at the same time period; but they made more precise estimates of the exposure to RF energy that people got in various areas. They found increased childhood leukemia in one area near the TV antennas, but not in other similar areas near the same TV antennas, and they found no significant correlation between RF exposure and the rate of childhood leukemia. The increased incidence reported by Hocking et al [23] was found to have been based on data from a single area, and to have resulted largely from cases diagnosed before 24-hr TV transmission was introduced at most of the stations.
  • 1997: Dolk and colleagues [28] investigated a reported leukemia and lymphoma cluster near a high-power FM/TV broadcast antenna at Sutton Coldfield in the UK. They found that the incidence of adult leukemia and skin cancer was elevated within 2 km of the antenna, and that the incidence of these cancers decreased with distance. No associations at all were seen for brain cancer, male or female breast cancer, lymphoma or any other type of cancer.
  • 1997: Because of the above finding, Dolk and colleagues [29] extended their study to 20 other high-power FM/TV broadcast antennas in the UK. Cancers examined were adult leukemia, skin melanoma and bladder cancer, and childhood leukemia and brain cancer. No elevations of cancer incidence were found near the antennas, and no declines in cancer incidence with distance were seen. This large study does not support the results found in the much smaller studies by the same authors at Sutton Coldfield [28] or by Hocking et al [23] in Australia.
  • 2001: In a follow-up to the first 1997 Dolk et al study [28], Cooper et al [216] reported that more recent cancer incidence data did not support the association of distance and adult leukemia incidence reported at Sutton Coldfield.
  • 2002: Michelozzi et al [135] reported that the incidence of childhood leukemia was elevated within 6 km of Vatican Radio (31 transmitters at 4-44 kHz and 0.5-1.6 MHz, with power of up to 600,000 W). The authors also report elevated leukemia in adult men residing near the transmitters, but not in adult women. Interpretation of this reported cancer cluster is limited by the small numbers and by the use of distance as a surrogate of exposure.
  • 2002: Hallberg and Johansson [134] speculated that the increase in melanoma seen in Sweden (and industrialized countries) since 1960 is due to exposure to FM radio broadcasting.
  • 2004: Park et al [204] reported that overall cancer death rates were slightly elevated among people who died in "administrative units" that contained AM radio broadcast antennas. The overall association is weak and is seen only in males. No specific types of cancer are elevated, and there is no trend towards increased cancer death rates with increasing broadcast power. The authors note that "In the Korean culture, most people tend to return to their hometown when they die"; so that the "administrative units" where people die will frequently not reflect where they lived (and what they were exposed to) before they developed cancer.

16B) Cancer cluster studies

The major steps in evaluating reports of "cancer clusters" are:

  1. Define a logical (as opposed to arbitrary) boundary in space and time;
  2. Determine whether an excess of a specific type of cancer has actually occurred;
  3. Identify common exposures and characteristics.

The above steps have not generally been followed in studies of RF energy, and the reports of "cancer clusters" are of essentially no value in determining whether exposure to RF energy is a cause of cancer (see Elwood [63] for details of these studies).


16C) Occupational exposure studies

There are five epidemiological studies of occupational exposure to RF energy that are generally considered to have acceptable design and analysis, adequate sample size, and sufficient follow-up time: Robinette et al [52], Hill [53], Milham [54], Morgan et al [78] and Groves et al [126]. These five studies do not show any consistent associations between exposure to RF energy and either cancer in general or any specific kind of cancer.

The other studies of acceptable design (Lilienfeld et al [55 and Q16D], Lagorio et al [56], Muhm [57], Tynes et al [58], Grayson et al [27], and Thomas et al [74]) have more limitations in exposure assessment, case ascertainment, or follow-up time; but they also do not suggest that RF energy exposure increases the risk of either cancer in general or any specific kind of cancer.

Recent major occupational studies of RF energy exposure include:

2000: Morgan and colleagues [78] studied all major causes of mortality (with emphasis on brain cancer, lymphoma and leukemia) in employees of Motorola, a manufacturer of wireless communication products. Based on job titles, workers were classified into high, moderate, low, and background RF exposure groups. For workers with moderate or high RF energy exposure no elevation in rates of brain cancer, leukemia and lymphoma were found. Actual peak and/or average RF energy exposure levels are not known.

2002: Groves and colleagues [126] reported that exposure to RF energy from US Navy radar during the Korean War was not associated with a subsequent increase in cancer rates. In comparison with Navy men who served at the same time, but who had "low radar exposure potential", the sailors with "high radar exposure potential" showed less overall cancer and brain cancer than expected. The rate of nonlymphocytic leukemia was elevated, but the authors note that this increase was statistically significant in only one of the three high exposure occupations. This is a follow-up study to Robinette et al [52].


16D) Microwaves and the US Embassy in Moscow

There have been claims (by Goldsmith [24], for example) that microwave exposures at the US Embassy in Moscow caused cancer and other injuries to people working there. This exposure to RF energy occurred, but there is no real evidence that it caused any health effects.

From 1953 to 1976, low-intensity microwaves were aimed at the American Embassy building in Moscow. Lilienfeld et al [55] performed a comprehensive survey of the health experience of 1827 foreign service employees who had been assigned to work at the embassy (and their dependents). Their health experience was compared to 2561 foreign service workers assigned to other East European embassies (and their dependents). Measurements of several different exposed areas of the Moscow embassy in three time periods indicated the maximum exposure was at 0.015 mW/cm-sq (at 0.5 to 9 GHz) for 18 hours/day. For most of the exposure period, the maximum level was lower. The embassies of the comparison population were said to be at background levels.

Lilienfeld et al [55] found no evidence that individuals in the Moscow group experienced higher mortality for any cause, or higher mortality from cancer in general or from any cancer subtype. Although this study was well-designed, the relatively small cohort size and short follow-up time limited its power. The power of this study is also limited by the extremely low RF energy levels, although it should be noted that the RF levels are larger than those found near most mobile phone base station antennas. The study concluded that:

"Personnel working in the American Embassy in Moscow suffered no ill effects from the microwaves beamed at the Chancery"

16E) Studies of exposure to mobile phone RF energy

1996: Rothman et al. [79] reviewed health records of more than 250,000 mobile phone users. They found no difference in mortality between the users of hand-held portable phones (where the antenna is placed close to the head) and car-mounted mobile phones (where the antenna is mounted on the vehicle). In a 1999 follow-up study [80], the same group examined specific causes of death among nearly 300,000 mobile phone users in several U.S. cities. They found no difference in overall cancer rates, leukemia rates, or brain cancer rates between the users of hand-held portable phones and the users of car-mounted mobile phones. The only specific cause of death that correlated with use of hand-held mobile phones was death from motor vehicle collisions.

1999: Hardell et al [69] analyzed mobile phone use in Swedish brain tumor patients, some of whom had used hand-held mobile phones for as long as 10 years. This was done as part of a larger study of possible causes of brain cancer. Exposure was assessed by questionnaires. No elevation of brain tumor incidence was found in users of either digital or analog phones (see figure below), and no exposure-response trend was observed . When analysis was restricted to temporal lobe (or temporal, occipital plus temporoparietal lobe) tumors on the same side of the brain where the mobile phone was reported to have been used, a non-significant excess incidence of brain cancer was found. This "handedness" was seen for use of analog phones, but not for the use of digital phones.

2000: Muscat et al [91] published a case-control study of brain tumor patients in the US, some of whom has used hand-held mobile phones for as long as 4 years. Exposure was assessed on the basis of in-hospital interviews. No elevation of brain tumor incidence was found in users of hand-held phones (see figure below), and no exposure-response trend was observed. The incidence of temporal lobe tumors (where RF energy exposure should be the greatest in users of hand-held phones) was not elevated. There was a non-significant trend for tumors to be on the side of the head where the patients reported using their phones; but when analysis was confined to the temporal lobe tumors, there were fewer tumors than expected on the side of the head where the phones were used. When Muscat et al [91] analyzed tumors by histopathological type, there was no excess of gliomas (the most common and deadly form of brain tumors), but there was a non-significant excess of neuroepitheliomas.

2001: Inskip et al [95] reported on brain tumor patients in a different part of the US than Muscat et al [91]. Some of them had used hand-held mobile phones for as long as 5 years. They found no elevation of brain tumor incidence in users of hand-held phones (see figure below), and observed no exposure-response trend. The incidence of temporal lobe tumors (where RF energy exposure should be the greatest in users of hand-held phones) was not elevated. There was a non-significant trend for tumors to be on the side of the head opposite to where the patients had reported using their phones. When Inskip et al [95] analyzed tumors by histopathological type, there was no significant excess of any types of malignant or benign brain tumors.

2001: Johansen et al [101] published a retrospective cohort study of all types of cancer in Danish mobile phone users, some of whom has used mobile phones as long as 5 years. Mobile phone use was associated with a significantly decreased overall risk of cancer that was attributable largely to less smoking-related cancer. No increased risks of brain cancer, leukemia, lymphoma, ocular cancer or melanoma (or any other kinds of cancer) were found in mobile phone users; and no exposure response trends in leukemia or brain cancer incidence were seen. There was no increase in temporal or occipital lobe tumors in mobile phone users (see figure below).

2001: Stang et al [99] reported that the use of "radio sets, mobile phones, or similar devices at [the] workplace for at least several hours per day" was associated with uveal (intraocular) melanoma. Of 118 individuals with intraocular melanoma, 6 (5.1%) reported that they were "probable or certain" to have "ever been exposed" to mobile phones at work. According to the authors, this occupational mobile phone use is 4 times higher than expected. Mobile phone use outside of work was not assessed, and other risk factors (for example, UV exposure and light skin color) were not assessed. In the only other comparable study, Johansen et al [101] found less melanoma and ocular cancer than expected in mobile phone users.

2002-2003: Hardell and colleagues published four separate analyses of a study of brain tumor patients [137, 148, 159, 160]. It is not clear why this study has been published in four different formats. The study included both benign and malignant brain tumors, and both mobile phones and cordless phones. Benign (non-cancerous) brain tumors made up 55% of the total, and 35% of the phones used were cordless rather than "cellular". It is very difficult as assess the significance of the 2002-2003 Hardell reports [137, 148, 159, 160]:

  1. There are problems with the experimental design (see the 2002 review commissioned by the Swedish Radiation Protection Authority [143]).
  2. These are four different analyses of the same study.
  3. The data has been analyzed in many different ways; it has been subdivided by type of phone (analog vs digital vs cordless), operating frequency, hours of use, years of use, type of tumor, location of tumor and tumor latency. The four papers together contain over 500 separate subgroup analyses, and with this many looks at the data is impossible to tell whether observed associations are real or a matter of chance.
  4. The different analyses report different numbers of cases and controls (and calculate different relative risks) for what appear to be the same subgroups. Compare, for example, Table 2 of the first analysis [137] with Table II of the third version [159].
  5. In many subanalyses (particularly in the first and third versions), malignant brain cancers and non-malignant lesions are merged, so it is impossible to determine whether the incidence of malignant tumors is affected or not.

None of the three versions of the Hardell study that looked at malignant brain tumors [137, 148, 159] appear to show significant elevations in the incidence of malignant brain tumors in users of analog or digital mobile phones (see Fig below). In fact, the incidence of malignant temporal lobe tumors was slightly decreased in some analyses. In the second analysis [148], Hardell et al report that the incidence of brain tumors was increased on the side of the head where the phone was used and decreased on the other side, with no statistically-significant overall increase in the incidence of brain cancer.

The three versions of the study by Hardell and colleagues that looked at benign brain tumors [137, 159, 160] appear to show that the incidence of acoustic neuromas was elevated in users of analog phones, but whether the increase is statistically significant after correction for multiple comparisons is unclear. No increase was seen in users of digital phones. Of three later studies of acoustic neuromas, two (Muscat et al [127], Christensen et al [192]) found no increase, and one (Lönn et al [210]) reported a possibly-significant increase in long-term users of analog phones. Note that "acoustic neuroma" [127, 210], "acoustic neurinoma" [159] and "vestibular schwannoma" [160] are different names for the same type of benign brain tumor.

The studies done by Hardell and colleagues [69, 137, 159, 160] were rather harshly criticized in a 2002 review commissioned by the Swedish Radiation Protection Authority [143]. That review concluded:

"Because only living cases were interviewed and well over 500 cases were excluded and because there is evidence for selection and information bias, this study of cancer survivors cannot provide the basis for causal inferences. The health risks for cordless telephones which operate at power levels up to 100 times lower than analogue [mobile] telephones in Sweden indicate a reporting bias. The increase for ipsilateral (same side) phone use is balanced by a decrease for contralateral (opposite side) phone use, suggesting a reporting bias... There was no evidence of a dose-response... Because of the above listed shortcomings and the large number of comparisons made, over 200, bias and chance are the most likely explanations of the associations reported."

2002: Muscat et al [127] reported that use of mobile phones was not associated with an increased risk of acoustic neuromas (a benign brain tumor). This study parallels Muscat's earlier report [91] on malignant brain tumors and the use of hand-held mobile phones. The tumors that were found in mobile phone users were more likely to be on the side opposite where the phone was used, than on the side where the phone was reported to have been used.

2002: Auvinen et al [132] reported that there was no statistically-significant association of mobile phone use with the overall incidence of brain cancer or the incidence of salivary gland cancer. When brain cancers were subdivided by type, a weak association was seen for gliomas and use of analog phones; there was no significant association for digital phones (see figure below).

2004: Christensen et al [192] reported that use of mobile phones was not associated with an increased risk of acoustic neuromas (a benign brain tumor) in Denmark. These results are similar to those in the 2002 Muscat et al study [127] except that the Danish Study is slightly larger and includes more people with 5+ years of mobile phone use.

2004: Hardell et al [208] reported that use of mobile phones and/or cordless phones in Sweden was not associated with an increased risk of salivary gland tumors.

2004: Lönn et al [210] reported that long-term (greater than 10 years) use of analog phones was associated with an increase in the incidence of acoustic neuromas (a benign nerve tumor). The increase was not statistically significant, but the acoustic neuromas that occurred in these long-term users occurred disproportionately on the side of the head where they reported using their analog phones. No increase in the incidence of acoustic neuromas was seen in digital phone users, or in analog phone users with less than 10 years of use. The higher incidence of neuromas on the side of the head where phone use was reported by the users may be an example of recall bias; that is, a user with a tumor on one side of their head might be more likely to remember (recall) using the phone on that side of the head. Such "recall bias" is evident in the part of the study that looked at gliomas and meningiomas [see below and 227].

2005: Lönn et al [227] reported that regular use, or long-term (greater than 10 years) use, or heavy (greater than 500 hours) use of mobile phones (analog or digital) was not associated with an increase in the incidence of malignant brain tumors. In fact, the incidence of these tumors was slightly less than expected (see figure below). The incidence of tumors in the parts of the brain where exposure to RF energy would be the highest was also slightly less than expected in long-term users of mobile phones (see figure below). The incidence of both gliomas and meningiomas was elevated on the side of the head where the subject reported using their mobile phones, but was proportionately decreased on the other side. The authors argue that the increase on the side of the head where phone use is reported is "recall bias".
The authors argue:

"The slightly increased odds ratio for glioma and meningioma associated with duration of years of ipsilateral mobile phone use could not be verified in the analysis of ipsilateral mobile phone use restricted to the temporal or parietal lobes. If there is a causal association between radiofrequency exposure from mobile phone use and brain tumors, we would have expected the highest odds ratio in the analysis restricted to the temporal or parietal lobes where the exposure from the mobile phone is highest. This, together with the finding of a decreased odds ratio for contralateral mobile phone use, indicates that recall bias may have affected these results. It is not biologically plausible that radiofrequency exposure from mobile phone use would increase the brain tumor risk on the side of the head where the phone is usually held and protect against brain tumors on the opposite side of the head."

Malignant Brain Cancer in Users of Hand-Held Mobile Phones

Malignant brain Cancer in Users of Hand-Held Mobile Phones
Relative risk of malignant brain cancer (with 95% confidence interval) in users of hand-held mobile phones from the epidemiological studies of Hardell et al [69, 137, 148], Muscat et al [91], Inskip et al [95], Johansen et al [101] Auvinen et al [132] and Lönn et al [227]. The number of exposed cases in the overall analysis, and the sub-analyses are shown in parentheses. The top set of relative risks looks at the least restrictive definition of "mobile phone use" reported by each group, the middle set of relative risks looks at the group with the longest use (or longest latency) analyzed by each group, and the bottom group looks at tumors in the lobe of the brain expected to get the highest exposure to RF energy. Adapted from Moulder et al (Int J Rad Biol 81:189-203, 2005).

16F) Reviews of the epidemiology

In a 2002 review of the mobile phone epidemiology, Boice and McLaughlin [143] concluded that:

"In our view, a consistent picture has emerged from these studies that appear to rule out, with a reasonable degree of certainty, a causal association between cellular [mobile] telephones and cancer to date. No consistent evidence was observed for increased risk of brain cancer, meningioma, acoustic neuroma, ocular melanoma or salivary gland cancer, examined over a wide range of exposure measures... Complementing the human data are the emerging results of experimental studies which have failed to confirm earlier reports of possible adverse outcomes from RF [energy] exposure. Moreover, there is no biologically plausible mechanism to support a carcinogenic effect of non-ionizing RF waves."

In a 2003 review of the epidemiology literature, Elwood [185e] concluded that:

"Epidemiological studies of radio frequency (RF) exposures and human cancers include studies of military and civilian occupational groups, people who live near television and radio transmitters, and users of mobile phones. Many types of cancer have been assessed, with particular attention given to leukemia and brain tumors. The epidemiological results fall short of the strength and consistency of evidence that is required to come to a conclusion that RF emissions are a cause of human cancer. Although the epidemiological evidence in total suggests no increased risk of cancer, the results cannot be unequivocally interpreted in terms of cause and effect. The results are inconsistent, and most studies are limited by lack of detail on actual exposures, short follow-up periods, and the limited ability to deal with other relevant factors. In some studies, there may be substantial biases in the data used. For these same reasons, the studies are unable to confidently exclude any possibility of an increased risk of cancer."

In a 2003 review of the epidemiology literature, Breckenkamp et al [194] concluded that:

"In most of the studies, an increased risk for various types of cancer was found in exposed study participants, although in different organs. The overall results were, however, inconsistent. The most important limitations of the studies were the lack of measurements referring to past and current exposures and, thus, the unknown details of actual exposure, the use of possibly biased data as well as the lack of adjustment for potential confounders, and the use of indirect standardization techniques. Due to these limitations and the inconsistencies of the results it has to be concluded that the studies give no evidence of [RF energy or microwaves] causing cancer."

In a 2003 review of the epidemiology literature, an independent expert group formed by the Swedish Radiation Protection Authority [195] concluded that:

"Only a small number of epidemiological studies on mobile phone use and cancer risk are available. Overall, the majority of the studies have found no indication of increased risks, although some positive findings are reported in two studies. There are, however, methodological considerations that limit the interpretability of these few positive findings. Limitations are also obvious in the studies that are reporting no effects, primarily because of short follow-up periods. Thus, current evidence is inconclusive regarding cancer risk following RF exposure from mobile phones."
On-line at: http://www.ssi.se/english/EMF_exp_Eng_2003.pdf.

In a 2004 review of the epidemiology literature, the International Commission for Non-Ionizing Radiation Protection (ICNIRP) Standing Committee on Epidemiology [219] concluded that:

"We have undertaken a comprehensive review of epidemiologic studies about the effects of radiofrequency fields (RFs) on human health... Results of these studies to date give no consistent or convincing evidence of a causal relation between RF exposure and any adverse health effect. On the other hand, the studies have too many deficiencies to rule out an association. A key concern across all studies is the quality of assessment of RF exposure. Despite the ubiquity of new technologies using RFs, little is known about population exposure from RF sources and even less about the relative importance of different sources. Other cautions are that mobile phone studies to date have been able to address only relatively short lag periods, that almost no data are available on the consequences of childhood exposure, and that published data largely concentrate on a small number of outcomes, especially brain tumor and leukemia."

On a related issue [145, 149], a US federal judge ruled in September 2002 that the plaintiffs in one of the major mobile phone - brain cancer law suits had presented "no sufficiently reliable and relevant scientific evidence to support either general or specific causation." The ruling may result in the dismissal of most of (or all of) the US law suits claiming that mobile phones cause brain cancer. The plaintiffs relied heavily on the epidemiological studies of Hardell et al [69,137,148] and the laboratory studies of Lai and Singh [25, 26]. The actual ruling is on-line at: http://www.mdd.uscourts.gov/Opinions152/Opinions/newman0902.pdf. In October 2003, this ruling was upheld by the Court of Appeals [145].


17) Could the pulse-modulated RF energy used in mobile telecommunications produce different effects than the continuous-wave (CW) RF energy used in many laboratory studies?

Possibly, but there is no confirmed evidence for such effects. It has been suggested that amplitude-modulated (AM) and pulse-modulated RF energy might have different effects than continuous-wave (CW, unmodulated) RF energy (see for example Hyland [93] and d'Ambrosio et al [119]). This could be important, since mobile phones and their base stations produce a modulated signal, and much of the research has been done with unmodulated RF sources.

In 2003 the US National Council on Radiation Protection and Measurements (NCRP), issued a report on the issue of amplitude modulation [201] and concluded:

"The literature related to modulation-dependent effects of RF energy is a small part of the total scientific literature with relatively few experimental studies of animals that were designed to examine biological effects of electromagnetic fields as a function of modulation... The results are mixed, but suggest that pulsed RF energy can be more effective in producing biological effects under some circumstances than continuous wave energy of the same average incident power density... These studies do not suggest a hazard that might be present under exposure conditions allowed by the current limits."
"This Commentary concludes that the scientific literature related to modulation-dependence of biological effects of RF energy is not sufficient to draw any conclusions about possible modulation-dependent health hazards of RF fields, nor is there any apparent biophysical basis from which to anticipate such hazards apart from exposure to very intense RF pulses produced by some specialized military equipment."

In a 2004 commentary, Foster and Repacholi [206] reviewed the issue of whether modulation should be considered "as a factor of potential biological importance in assessment of risk of RF energy emitted by communications systems and other technologies." They concluded that:

"Modulation introduces a spread of frequencies into a carrier waveform, but in nearly all cases this spread is small compared to the frequency of the carrier. Consequently, any nonthermal (field-dependent) biological effects related to modulation must result from interaction mechanisms that are fast enough to produce a response at radiofrequencies. Despite considerable speculation, no such mechanisms have been established."
"While a variety of modulation-dependent biological effects of RF energy have been reported, few such effects have been independently confirmed. Some widely discussed effects, for example a reported modulation-dependent effect of RF fields on the efflux of calcium from brain tissue, remain controversial with no established biological significance. The lack of understanding of the mechanisms underlying such effects prevents any assessment of their significance for communications signals with complex modulation characteristics. Future research should be directed at confirmation and mechanistic understanding of reported biological effects related to modulation."
"While modulation should be considered in the design of risk studies involving communications-type signals, it should not compromise other aspects of good study design, such as maintaining adequate statistical power and identifying dose-response relationships.

18) Are there groups (such as children or the elderly) that are more sensitive to the effects of RF energy?

Possibly. Some groups in the general population might be more sensitive to the effects of RF energy than others, but no such groups have actually been found. The possible existence of such sensitive individuals is one of the main reasons that an additional 5-fold safety margin is added to the public exposure guidelines (see Q9).


19) Will mobile phone base station antennas affect heart pacemakers, cause headaches, etc?

Although the public's principal health concern about mobile phone base station antennas appears to be the possibility of a cancer connection (see Q21 and Q23A-Q23C), other health-related issues come up periodically. This section will also cover less common issues. The possibility of a connection with miscarriages and birth defects is covered in Q22.


19A) Will mobile phone base station antennas affect medical devices such as cardiac pacemakers?

No. There is no evidence that mobile phone base station antennas will interfere with cardiac pacemakers or other implanted medical devices as long as exposure levels are kept within the IEEE/ICNIRP/FCC guidelines for uncontrolled (public) exposure (see Q8 and Q12).

It is possible that digital mobile phones themselves might interfere with pacemakers if the antenna is placed directly over the pacemaker. This problem is reported to occur with only some types of digital phones and some types of pacemakers [34, 90].


19B) Do mobile phones or mobile phone base stations cause headaches?

No one has claimed that there is scientific evidence that base stations cause headaches, and there are no biophysical or physiological grounds for expecting such effects. But it is possible that the use of mobile phone handsets can cause headaches.

In 1998, Frey [36] reported anecdotal evidence that mobile phones cause headaches.

In 2000, Oftedal et al [100] found that users of mobile phones commonly report having headaches, but since the study contains no data on non-users it is not known whether the rate of headaches reported by these mobile phone users is unusual. An extension of the study by Sandström et al [106] reported that headaches and other symptoms were higher in users of analog (NMT 900) phones than users of digital (GSM) phones.

In 2000, Chia et al [94] reported that headaches were significantly more common among users of hand-held mobile phones than among non-users (65% vs 54%). Headache prevalence increased with duration of use, and the use of hand-free equipment eliminated the increase.


19C) Does RF energy from mobile phones or mobile phone base stations cause physiological or behavioral changes?

There are unreplicated reports of such effects. There are some studies that suggest that RF energy from hand-held mobile phones or mobile phone base stations might cause subtle biochemical, physiological or behavioral changes. However, none of the studies provides substantial evidence that mobile phone base stations might pose a health hazard.

  • Most of the reports are of "effects" that do not imply the existence of hazards.
  • Most of the studies use RF energy of an intensity far above those associated with mobile phone base stations.
  • Most of these reports have not been independently confirmed, and there are grounds for being skeptical about most of them.
  • Some of the reports could not be confirmed by the groups that reported them in the first place.

Recent (post-2002) reports about such effects include (but also see "What's New"):

  • Effects on human performance, sleep patterns, physiology and/or feelings of "well-being":
    • 2003: Borbély, Huber and colleagues [166] reported that exposure to a mobile phone signal could cause slight changes in sleep patterns and sleeping EEG.
    • 2003: The Koivisto group reported [164] that they could not replicate their own earlier finding of RF energy effects on human reaction time. They concluded that: "Our results indicate that our [mobile phone signal] had no immediate effect on human cognitive functioning or that such effects are so small that they are observed on behavior only occasionally".
    • 2003: Lee et al [176] reported that exposure of human volunteers to mobile phone RF energy resulted in better performance in one of two measures of attention.
    • 2003: Zwamborn et al [178] reported that exposure of human volunteers to base station RF energy caused decreased feelings of "well-being" and improvement on some cognitive function tests (e.g., reaction time and memory tests). The effect on "well-being" was found only for the UMTS (Universal Mobile Telecommunications Service) type of signal used by G3 (third generation) mobile phone systems; it was not found for GSM mobile phone signals (the system that now dominates Europe). The effects on cognitive function were found for both UMTS-like and GSM signals; the effects occurred in 8 of 30 tests, with no obvious pattern. Some details of the study:
      • Two groups were tested, one made up of people who had complained about health effects of exposure to GSM base stations, and one made up of people without complaints. The effect of the UMTS-like signal on "well-being" was worse in the group that had previously reported health effects from GSM base stations, but the effects on cognitive function were about the same.
      • "Well-being" analysis is based on a set of tests that measure symptoms of anxiety, inadequacy and depression.
      • Exposures were in the main beam at a distance of 3 meters (10 feet); the peak (10 gram) SARs were calculated to be between 0.05 and 0.08 milliW/kg.
      • Media reports claimed that the study had found that the UMTS-like base station caused "headaches and nausea", but the actual report contains no support for that claim.
      • The actual report is on-line at: http://www.tno.nl/tno/actueel/tno_nieuws/2004/onderzoek_tno_naar_effect/tno_fel_report_03148_def.pdf
      • A formal critique of the study was done by the Health Council of the Netherlands. It is on-line at: http://www.gr.nl/pdf.php?ID=1042
        "the Committee concluded that the TNO study was of good quality, both in terms of design and execution. The Committee had some comments, however, regarding the interpretation of the data... The Committee takes the view that it is not possible, on the basis of the results of the TNO study, to determine the existence of a causal relationship between exposure to electromagnetic fields and decreased well-being or adverse health effects."
      • In 2006 an independent attempt to confirm Zwamborn et al study found no evidence for any such effects.
        - SJ Regel, S Negovetic et al: UMTS base station-like exposure, well being and cognitive performance. Environ Health Perspec on-line (6-Jun-2006).
    • 2003: Kramarenko and Tan [182] reported subtle changes in the brain function (EEG) of mobile phone users.
    • 2003: In a review of the effects of RF energy on behavior, D'Andrea et al [185d] concluded that: "…exposure to RF energy can lead to changes in the behavior of humans and laboratory animals that can range from the perceptions of warmth and sound to lethal body temperatures… Reports of change of cognitive function (memory and learning) in humans and laboratory animals are in the scientific literature. Mostly, these are thermally mediated effects, but other low level effects are not so easily explained by thermal mechanisms".
    • 2003: In a review of the effects of RF energy on the nervous system, D'Andrea et al [185h] concluded that: "the diverse methods and experimental designs as well as lack of replication of many seemingly important studies prevents formation of definite conclusions concerning hazardous nervous system health effects from RF exposure. The only firm conclusion that may be drawn is the potential for hazardous thermal consequences of high power RF exposure".
    • 2003: In a review of the auditory response to pulsed radiofrequency energy (also called "microwave hearing"), Elder and Chou [185j] concluded that: "The hearing of RF [energy] induced sounds... is considered to be a biological effect without an accompanying health effect."
    • 2004: Krause and colleagues [188] reported that they could not confirm their previous (2000) report that human volunteers who were exposed to 902 MHz RF from a GSM phone showed changes in brain activity (EEG) and performance on memory tasks. The replication attempt was larger; and unlike the original, it was double-blind.
    • 2004: Hamblin et al [197] reported that 1 hour of exposure of human volunteers to mobile phone RF energy resulted in decreased reaction times.
    • 2004: Tahvanainen et al [198] reported that 35 min of exposure of human volunteers to mobile phone RF energy (900 or 1800 MHz) had no effect on blood pressure or heart rate.
    • 2004: Haarala and colleagues [205] reported that they could not confirm their previous (2000) report that human volunteers who were exposed to 902 MHz RF from a GSM phone showed effects on short-term memory. The replication attempt was larger; and unlike the original, it was double-blind.
    • 2004: Maier and colleagues [207] reported that exposure of human volunteers to RF energy from GSM mobile phones impaired their performance on cognitive performance tests.
    • 2004: Curcio et al [220] reported that exposure to human volunteers to mobile phone RF energy improved their performance on 2 of 6 reaction time and memory tests, and had no effect on the other 4.
    • 2004: Hinrichs et al [222] reported that exposure to human volunteers to mobile phone RF energy had no effect on reaction time or memory tests.
    • 2005: Besset et al [225] reported that exposure to human volunteers to mobile phone RF energy had no effect on reaction attention or memory tests.
    • 2005: Huber et al [231] reported that exposure to human volunteers to mobile phone RF energy caused an in cerebral blood flow.
  • Effects on melatonin in humans and animals:
    • 2003: Heikkinen et al [171] reported that mobile phone RF energy had no effect on melatonin excretion in mice.
    • 2003: Bakos et al [184] reported that mobile phone RF energy (900 or 1800 MHz GSM-modulated at 0.02-0.10 mW/cm-sq) had no effect on melatonin levels in rats.
    • 2003: In a review of the effects of RF energy on the endocrine system, Black and Heynick [185l] concluded that: "There is limited evidence that indicates no interaction between [RF energy] and the pineal gland…"
    • 2005:Hata et al [226] reported that a 4-hr exposure of rats to 1439 MHz TDMA mobile phone RF energy (SAR: 1.9-2.0 W/kg whole body, 7.5 W/kg brain) had no effect on melatonin and serotonin levels.
  • Effects on immune function:
    • 2003: Gatta et al [181] found that mobile phone RF energy (GSM-modulated 900-MHz for 1-4 weeks at 1 or 2 W/kg) had no "substantial effects" on immune function in mice.
    • 2003: In a review of the effects of RF energy on immunological function, Black and Heynick [185l] concluded that: "Lifetime studies of [RF energy] exposed animals show no cumulative adverse effects in their endocrine, hematological, or immune systems."
  • Effects of behavior and performance in animals:
    • 2003: Yamaguchi et al [167] exposed rats to pulsed mobile phone RF energy at low intensity (brain SAR of 7.5 W/kg, whole body SAR of 1.7 W/kg) and high intensity (brain SAR of 25 W/kg, whole body SAR of 5.7 W/kg) for 45 min daily for 4 days. Behavioral effects were seen only at the higher intensity which also caused at a 3°C rise in body temperature.
    • 2003: Dubreuil et al [183] reported that mobile phone RF energy (24 minutes, 900 MHz GSM-modulated at 1-2 W/kg) had no effect on learning (maze performance and object recognition) in rats.
    • 2004: In 1994, Lai and colleagues reported that exposure of rats to 2450 MHz RF energy at 0.6 W/kg caused deficits in their ability to learn a maze (working memory). The study generated much interest because no other published studies had found effects on memory at such low power levels. Cobb et al [189] ran a replication of the study, and found that this type of exposure to RF energy had no effect at all on memory or maze performance in rats.
    • 2005: Cosquer et al [230] reported that exposure of rats to 2450 MHz RF energy for 45 minutes (whole-body SAR to 0.6 W/kg and brain SAR to 0.9 W/kg) had no effect on anxiety responses in a maze.
  • Effects on the blood-brain barrier of animals:
    • 2003: Salford et al [158] reported that 2 hours of exposure of rats to GSM-type RF energy (SARs of 0.02 and 0.2 W/kg) caused leakage of the blood-brain barrier that resulted in nerve damage. The authors do not address the fact that other studies using longer and more intense exposures (see for example: Tsurita et al [87], Finnie et al [112,144]) have found no evidence for such effects, or that fact that studies of long-term exposure of rats and mice to RF energy have not found any evidence of CNS injury (e.g., Adey et al [19, 40], Zook and Simmens [73], LaRegina et al [175], Anderson et al [203]). For a further discussion of this issue see Lin's report [211] on the 2003 workshop that was held discuss research on the effects of RF energy on the blood-brain barrier.
    • 2003: In a review of the effects of RF energy on the nervous system, D'Andrea et al [185h] concluded that: "Effects of RF exposure on the blood-brain barrier (BBB) have been generally accepted for exposures that are thermalizing. Low level exposures that report alterations of the BBB remain controversial".
    • 2004: Lin [211] reported on a workshop held in Nov 2003 to discuss research on the effects of RF energy on the blood-brain barrier. According to Lin:
      • "there were considerable disagreements and speculations on the recent experimental results and interpretations [e.g., Salford et al ref 158]. Concerns expressed included... exposure system and dosimetry and potential confounders... [and] there were issues of interpretation and relevance of the findings versus human health and safety of cell-phone use..."
      • "A conspicuous and significant factor in the uncertainty is the paucity of experimental data... A particularly vexing problem with the [Salford et al ref 158] studies was that alteration of barrier permeation appeared to have been observed at many levels of microwave exposure including those that were as low as 100 times below that allowed for mobile phones. While Fritze et al [Acta Neuropathologica 94:465-470, 1997]... had failed to confirm the Salford et al findings at 0.3-1.5 W/kg, they had confirmed extravasation of serum albumin at 7.5 W/kg, a level about 4 times greater than the maximum permissible level for cellular phones."

20) Can RF energy produce biological effects?

Yes. If exposure is sufficiently intense, RF energy can cause biological effects (for a review, see Dewhirst et al. [173]). Possible injuries include cataracts, skin burns, deep burns, heat exhaustion and heat stroke. Most, if not all, of the known biological effects from exposure to high-power RF sources are due to heating [16]. The effects of this heating range from behavioral changes to eye damage (cataracts) [for details, see 3, 4, 5, 41, 61, 62, 68, 170, 173, 185c, 185d, 185h,185i]. Except possibly within a few meters of the radiating surfaces of an antenna, the power produced by a mobile phone base station is too low to cause heating.

There have been scattered reports of effects [17] that do not appear to be due to heating, the so called non-thermal effects [16, 20, 104]. None of these effects have been independently replicated, and most have no obvious connections to human health risks [185a].

The lack of biological effects from exposures to RF energy that do not produce biologically-significant temperature changes is not surprising, as there are no known biophysical mechanisms that would suggest that such effects were likely [20, 82, 104, 109, 154, 185a].

In a 2001 review, Pickard and Moros [104] concluded that:

"The prospects of UHF (300-3000 MHz) irradiation producing a nonthermal bioeffect are considered theoretically and found to be small... This supports previous arguments for the improbability of biological effects at UHF frequencies unless a mechanism can be found for accumulating energy over time and space and focusing it. Three possible mechanisms are then considered and shown to be unlikely... Finally, it is concluded that the rate of energy deposition from a typical fields and within a typical tissue is so small as to make unlikely any significant nonthermal biological effect."?

In a 2003 review, Adair [154] concluded that:

"Continuous radiofrequency (RF) and microwave radiation with intensity less than 10 mW/cm-sq are unlikely to affect physiology significantly through athermal mechanisms. Biological systems are fundamentally noisy on the molecular scale as a consequence of thermal agitation and are noisy macroscopically as a consequence of physiological functions and animal behavior. If electromagnetic fields are to significantly affect physiology, their direct physical effect must be greater than that from the ubiquitous endogenous noise. Using that criterion, I show that none of a set of interactions of weak fields... can affect biology on the molecular scale. Moreover, I conclude that such weak fields are quite unlikely to generate significant effects in their interactions with larger biological elements such as cells."

21) Is there any replicated evidence that RF energy can cause cancer?

No. Even at high levels of exposure, there is no substantial evidence that RF energy can either cause or contribute to cancer (for a review, see Dewhirst et al. [172]). Although research in this area has been extensive, there is no replicated laboratory or epidemiological evidence that RF energy at the power levels associated with public exposure to mobile phone base station antennas are associated with cancer [for details, see: Q16C, Q16E, Q16F, Q23B and refs 64, 68, 84, 92, 143, 172, 185e, 185f, 185g, 185m, 195, 200, 209, 217, 219, 229].

There are two laboratory reports that exposure to RF energy might produce cancer, or cancer-related injuries in animals. These studies are discussed in Q23A and Q23C. Both studies use RF energy levels far above those found in publicly-accessible area near base station antennas, and both studies have failed confirmation attempts.

The epidemiological studies of RF energy show no consistent association with total cancer, or with any specific type of cancer (see Q16).


22) Is there any evidence that RF energy can cause miscarriages or birth defects?

Indirectly, yes. Exposure to levels of RF energy sufficient to cause whole body heating can cause miscarriages or birth defects [185k]. The power produced by mobile phone base station antennas is far too low to cause such heating. There is no laboratory or epidemiological evidence at all that RF energy at the power levels associated with public exposure to RF energy from mobile phone base station antennas are associated with miscarriages or birth defects [see refs in 3, 4, 5, 185k, 200 for details].


23) What do the most recent scientific laboratory studies of RF energy and cancer show?

There is a constant flow of new information. Studies which attract major attention will often get their own sections, such as the mouse and rat cancer studies discussed in Q23A and Q23B, and the DNA strand break studies discussed in Q23C.


23A) The 1997 report that exposure of mice to mobile phone RF energy causes lymphoma.

A 1997 Australian study by Repacholi et al [30] reported that lymphoma-prone mice exposed for 18 months to strong, but intermittent, RF energy of the type used by digital mobile phones have an increased incidence of lymphomas. No increases in the incidence of other types of tumors were found. The field intensities used are above the guidelines for public exposure recommended in the IEEE/NCRP/ICNIRP guideline (Q8 and Q11), and are far above those that exist in publicly-accessible areas near mobile phone base station antennas.

In 2002, Utteridge et al [136] reported that they could not replicate this increase in lymphoma in either normal mice or in the same lymphoma prone mice.

The original Repacholi et al [30] study was criticized on a number of grounds:

  1. The RF energy dose (SAR) in the study was poorly defined, so that the possibility of thermal stress could not dismissed.
  2. No normal animals were used, so there was no way to determine whether the effect was unique to the animals that had been genetically-engineered to make them lymphoma prone.
  3. Only one RF energy dose was used, so that the nature of the dose-response was unknown.
  4. The animals that were still alive at the planned end of the study were assumed to be lymphoma-free, but were not proven to be.

The Utteridge et al [136,155] replication study was designed to address the above criticisms:

  1. A different type of exposure system was used so that RF energy doses could be more tightly defined and shown to be non-thermal.
  2. Normal animals, as well as lymphoma-prone animals were used.
  3. Four different dose groups were used (SARs of 0.25, 1.0, 2.0 and 4.0 W/kg).
  4. Surviving animals were examined for tumors at the end of the study.

In the 1997 Repacholi et al [30] study, 100 lymphoma-prone mice were exposed to pulsed 900 MHz RF energy for 1 hour per day for 18 months at an SAR that varied between 0.01 and 4.2 W/kg. Lymphoma incidence was raised by a factor of 2.4 compared to a similar group of mice that had been sham-exposed.

In the 2002 Utteridge et al [136,155] study, 480 normal and 480 lymphoma-prone mice were exposed to 898 MHz GSM-modulated RF energy for 1 hour per day for 24 months at SARs of 0.25, 1.0, 2.0 and 4.0 W/kg (120 mice of each type at each SAR). No statistically-significant increase in lymphoma incidence were found and no statistically-significant dose-response trend was observed.

Five letters to the editor concerning the Utteridge et al report and the authors' responses appeared in 2003 [155].

Note that there are at least 25 other studies of long-term exposure of rodents to RF energy. None of these studies have reported excess lymphoma. See Q23B for details.


23B) Studies in which rodents were exposed to mobile phone RF energy for long periods of time.

There are more than 25 studies of long-term exposure of rodents to RF energy. These studies find that long-term exposure of rodents to RF energy does not appear to induce or promote lymphoma (see Q23A), or brain cancer (see Q23C) or tumors in general. Life time exposure of rodents also does not appear to cause any decrease in life span or cause mutations. The studies are summarized below (but also see "What's New").

1971: Spalding el al [49] exposed mice to 800-MHz RF energy for 2 hr/day, 5 days/wk, for 35 wks at a SAR of 13 W/kg. The average life span of the RF-exposed group was slightly, but not significantly, longer than that of the sham-exposed group.

1982: Szmigielski et al [50] exposed mice to 2450-MHz RF for 2 hr/day, 6 days/wk, for up to 6 months. Exposures were at 2-3 and 6-8 W/kg. Controls included both sham-irradiated animals and animals subject to "confinement stress" (see Stagg et al [105]). Both RF exposure and confinement stress significantly accelerated the appearance of both chemically-induced skin and breast tumors. The dosimetry in this study is uncertain, and it is likely that the mice exposed at the higher dose were subjected to physiologically-significant heating.

1988: Saunders et al [67] exposed male mice to 2450-MHz RF energy (power density of 10 mW /cm-sq and SAR of 4 W/kg) for 6 hrs/day for a total of 120 hr over an 8-week period. At the end of the treatment the mice were mated with unexposed females. There was no significant reduction in pregnancy rate, so that there had been no increase in dominant lethal mutations. Examination of spermatogonia showed no increase in chromosome aberrations. The authors conclude that "there is no evidence in this experiment to show that chronic exposure of male mice to 2450-MHz microwave radiation induces a mutagenic response".

1992: Chou et al [31] exposed rats to pulsed 2450 MHz RF at 0.15-0.40 W/kg [8] for 21.5 hrs/day and 25 months. No effects were observed on life-span or cause of death. An increase in total cancer was seen in exposed group, with no effect on survival. The malignancy rates in the controls was unusually low for this strain, and no increase in benign tumors were observed. Two primary lymphomas were seen in the exposed animals, and two in the controls. No benign or malignant brain tumors were seen in either exposed or control rats. The authors concluded that: "The findings of an excess of primary malignancies in exposed animals is provocative. However, when this single finding is considered in light of other parameters, it is conjectural whether the statistical difference reflects a true biological influence. The overall results indicate that there are no definitive, biologically significant effects…"

1994: Liddle et al [51] exposed mice to 2450-MHz RF energy for lifetime. They were exposed for 1 hr/day, 5 days/week throughout their life at either 2 or 6.8 W/kg. Life span was significantly shortened in mice exposed at 6.8 W/kg (median of 572 days vs 706 days in the sham-exposed group). However, at 2 W/kg, the RF-exposed animals lived slightly, but not significantly longer (median of 738 days) than the sham-exposed group. The authors suggested that the heating from exposure at 6.8 W/kg was stressful enough to decrease life span.

1994: Wu et al [44] exposed mice to a chemical carcinogen plus 2450 MHz RF at 10 mW/cm-sq (10-12 W/kg). Exposure continued for 3 hrs/day, 6 days/week for 5 months. The chemical carcinogen is one that causes colon cancer. No difference in colon cancer rates were seen between animals treated with the carcinogen alone and the animals treated with the carcinogen plus RF.

1997: Toler el [33] exposed mammary-tumor-prone mice to pulsed 435 MHz RF at 1.0 mW/cm-sq (0.32 W/kg). Exposure continued for 22 hrs/day, 7 days/week for 21 months. There were no differences in survival or mammary tumor incidence. There were also no difference in the rates of any types of tumors between the exposed and the control group. Of particular note, there was no difference in the lymphoma, leukemia or brain tumor rate between the exposed and the control group.

1998: Frie et al [32] exposed mammary-tumor prone mice to 2450 MHz RF at a SAR of 0.3 W/kg. Exposure was for 20 hrs/day, 7 days/week for 18 months. The study found no difference in tumor incidence or survival between the exposed and the control group.

1998: Frie et al [35] did a second study using the same mouse model and the same exposure regimen, but a higher SAR of 1.0 W/kg. Again, the study found no difference in tumor incidence or survival between the exposed and the control group. There were no differences in lymphoma, leukemia or brain tumor incidence between the exposed and the control group in either study.

1998: Imaida et al [47] gave rats a chemical carcinogen that causes liver cancer, and then exposed some of them to 929 MHz RF at a SAR of 0.6-0.9 W/kg. Exposure was for 90 min/day, 5 days/week for 6 weeks. No difference in liver cancer rates were seen between RF-exposed rats and rats given only the chemical carcinogen.

1998: In a second study, Imaida et al [48] reported a similar lack of liver cancer promotion in rats exposed to 1500 MHz RF at a SAR of 2.0 W/kg. Again, exposure was for 90 min/day, 5 days/week for 6 weeks.

1999: Adey et al [19] reported that exposure of rats to pulse-modulated 837 MHz RF did not induce or promote brain tumors. RF exposure started with continuous whole-body far-field exposure of pregnant rats and continued through weaning. At 7 weeks of age, localized near-field exposure of the head was begun, and this exposure continued for 22 months (2 hrs/day, 7.5 min on - 7.5 min off, 4 days/wk). Some rats were also treated with a chemical brain tumor carcinogen (ethylnitrosourea, ENU). Brain SARs ranged from 0.7 to 1.6 W/kg, and whole-body SAR ranged from 0.2 to 0.7 W/kg; the range of SARs was due to changes in weight and variability in animal positioning. The number of brain tumors was less in the RF-exposed groups than in the sham-exposed groups, but the difference may not have been statistically significant.

1999: Chagnaud et al [75] reported that exposure of rats to a pulsed mobile phone RF energy (GSM) did not promote chemically-induced breast cancer. At various times after exposure to a chemical carcinogen, rats were exposed for 2 weeks at 2 hours per days to a 900-MHz GSM signal at 0.075 or 0.27 W/kg. No effects on tumor incidence, tumor growth or animal survival were observed.

1999: Higashikubo et al [76] reported that RF exposure of rats that were implanted with brain tumor cells had no effect on the growth of the development or growth of these brain tumors. Rats were exposed to either 835 MHz continuous wave RF or 848 MHz pulsed RF at SARs of 0.75 W/kg. Exposure was for 4 hrs/day, 5 days/week, starting 28 days prior to tumor implantation and continuing for 150 days after tumor implantation.

2000: Adey et al [40] reported that exposure to continuous wave 837 MHz RF did not induce or promote brain tumors in rats. Other than the difference in modulation, the 2000 study used the same design and exposure protocol as the 1999 study [19].

2001: Zook and Simmens [73] reported the absence of an effect on brain tumor incidence in rats exposed to continuous-wave or pulsed 860-MHz RF at 1.0 W/kg. Exposure was for 6 hrs/day, 5 days/week for 22 months, starting when the rats were 2 months old. Zook and Simmens also reported that the same RF protocols did not promote chemically induced brain cancer. No statistically-significant RF-related increases in overall cancer or any specific types of cancer (including lymphoma) were found.

2001: Jauchem et al [102] reported that there were no significant effects on mammary tumor development or animal survival in mammary tumor-prone mice exposed to pulses composed of an ultra-wideband (UWB) of frequencies, including those in the RF range. Histopathological evaluations revealed no significant effect on the numbers of neoplasms in any tissue studied (including lymphoma and brain cancer).?

2001: Heikkinen et al [114] reported that exposure of mice to RF energy of the type used by analog or digital mobile phones did not increase the incidence of cancer (particularly lymphoma) induced by ionizing radiation. Mice were exposed to ionizing radiation and then to pulsed (GSM-type) or continuous wave (NMT-type) RF. Exposure was at 1.5 W/kg (analog signal) or 0.35 W/kg (digital signal) for 1.5 hrs/days for 78 weeks. No increase in any types of cancer were observed in the animals exposed to RF energy.

2001: Imaida et al [117] reported that pulsed RF energy of the type used by Japanese digital mobile phones did not increase the incidence of chemically-induced skin cancer in mice. Imaida et al [117] tested both promotion and co-promotion (with TPA) protocols, and found no increase in skin cancer in either protocol.

2001: Mason et al [116] reported the absence of promotion or co-promotion of chemically-induced skin cancer in mice exposed to 94 GHz RF energy.

2002: Bartsch et al [120] reported that exposure of rats to mobile phone RF energy does not promote chemically-induced breast cancer. The rats were exposed to a chemical breast cancer carcinogen and/or to pulsed 900 MHz RF energy at 0.1 mW/cm-sq (SAR of 0.018-0.070 W/kg). RF exposure was for lifetime. No effect on latency or incidence of benign or malignant breast cancer were found. Prior to publication it was claimed (although not by the authors) that this study would show significant effects on breast cancer development.

2003: Heikkinen et al [171] reported that exposure of mice to mobile phone RF energy did not promote skin cancer induced by ultraviolet (UV) radiation. Mice were exposed for 52 weeks to UV radiation or to UV radiation plus pulsed RF energy. Exposure was to 849 MHz (DAMPS-type) or 902 MHz (GSM-type) RF energy at 0.5 W/kg for 1.5 hrs/day. UV radiation alone caused an increase in skin tumors, but the addition of RF energy did not significantly increase the skin tumor incidence.

2003: LaRegina et al [175] reported that exposure of rats to mobile phone RF energy had no effect on cancer incidence (including brain cancer and lymphoma) or on life span. Rats were exposed to 836 MHz continuous wave (FDMA) or 848 MHz pulsed (CDMA) RF energy for 4 hrs/day, 5 days/wk for two years. Exposure began when the rats were 6 weeks old and continued for two years. The brain SAR was 1.3 W/kg.

2003: Anane et al [177] exposed rats to a breast cancer carcinogen (DMBA) and/or to a 900-MHz GSM mobile phone signal. Exposure was 2 hr/day, 5 days/wk for 9 wks at 6 SARs ranging from 0.1-3.5 W/kg. Statistically significant promotion of chemically-induced breast cancer was observed at 1.4 W/kg in one experiment, but no such increase was found in a second experiment or at higher or lower SARS. There was no dose-response relationship.

2004: Anderson et al [203] reported that exposure of rats to 1600 MHz RF energy (Iridium signal) at 0.16 or 1.6 W/kg (brain SAR) had no effects on cancer incidence (including no effect on the incidence of brain cancer, breast cancer or leukemia), general health or survival. Exposures began with far-field exposure of pregnant rats (2 hr/day, 7 days/wk) that continued through weaning. Exposure resumed after weaning (head-on, near-field, 2 hr/day, 5 days/wk) and continued till the rats were 2 years old.

2005: Shirai et al [228] reported that exposure of rats to a 1439 MHz mobile phone signal did not enhance (promote) the incidence of chemically-induced brain or spinal cord tumors. Pregnant rats were exposed to a chemical brain tumor carcinogen (N-ethylnitrosourea, ENU) on day 18 of pregnancy. Some of the offspring were then exposed to the mobile phone signal for 104 weeks at 90 min/day and 5 days/week; exposure to the RF energy began at 5 weeks of age, Two exposure levels were used, with brain SARs of 0.67 and 2.0 W/kg (whole body SAR was less than 0.4 W/kg). The exposure to the mobile phone signal caused no differences in body weight, food consumption, or survival rates. The exposure to the mobile phone signal also caused no changes in the incidences or types of brain or spinal cord tumors.


23C) The 1995/1996 reports that exposure of animals to mobile phone RF energy causes DNA damage to their brain cells.

Agents that can damage the DNA of cells are presumed to have carcinogenic potential [41]. Agents that can damage DNA are called genotoxins, or are referred to as having genotoxic activity. In general, studies of cells exposed to RF energy have not found evidence for genotoxicity unless the SAR was high enough to cause thermal (heat) injury [3, 4, 5, 185f, 185m, 200, 224].

In 1995 and 1996, Lai and Singh [25, 26] reported that exposure to RF energy caused DNA damage in the brain cells of rats. In these experiments, rats were exposed to pulsed 2450 MHz RF at 0.6 and 1.2 W/kg for 2 hrs (note that this is not a "mobile phone"-type signal). After exposure, the animals were killed, and their brain cells were analyzed for DNA injury. The authors reported an increase in DNA stand breaks 4 hours after exposure.

The work of Lai and Singh [25, 26] has failed numerous independent attempts at confirmation, including (but also see "What's New"):

  • 1997: Malyapa et al [37, 38] reported that they could not detect the effect seen by Lai and Singh, but there were some differences between the studies.
  • 1998: Malyapa et al [39] reported that they could not detect the effect in a more exact replicate of the Lai and Singh [25, 26] study.
  • 2001: Li et al [180] reported the absence of DNA damage in cells exposed to mobile phone RF energy at SARs up to 5 W/kg.
  • 2002: Tice et al [121] reported that RF energy did not cause DNA strand breaks.
  • 2002: McNamee et al [146, 147] reported that RF energy did not cause DNA strand breaks.
  • 2002: Takahashi et al [129] reported that head-only exposure of mice to 1500 MHz RF energy at 0.7 and 2.0 W/kg (90 min/day, 5 days/week, for 4 weeks) did not produce mutations in their brain cells.
  • 2004: Lagroye et al [190] reported that exposure of mammalian cells to 2450 MHz RF energy at 1.9 W/kg did not cause DNA strand breaks.
  • 2004: Hook et al [191] reported that exposure of mammalian cells to analog or digital mobile phone signals at 0.03-3.2 W/kg did not cause DNA strand breaks.
  • 2004: Lagroye et al [193] reported that exposure of rats to 2450 MHz pulsed RF energy at 1.2 W/kg did not cause DNA damage in their brain cells.
  • 2004: Ono et al [199] reported that exposure of pregnant mice and their offspring to pulsed 2450 MHz RF energy at 4.3 W/kg (during the pulse) for 16 hrs/day until they were 10 weeks old did not induce mutations in brain cells or in other tissues.

Other recent (post-2002) studies on the genotoxic potential of RF have also reported no evidence for damage to DNA (but also see "What's New"):

  • 2003: Vijayalaxmi et al [161] reported that rats exposed to 1600 MHz RF energy for 2 years (2 hrs/day) at 0.16 or 1.6 W/kg showed no evidence of genotoxic injury (as assessed by micronucleus frequency in red blood cells).
  • 2003: McNamee et al [165] reported that a 24-hour exposure of human white blood cells to 1900 MHz RF energy (pulsed or continuous wave) at SARs of up to 10 W/kg did not produce genotoxic injury.
  • 2003: Zeni et al [174] reported that exposure of human white blood cells to continuous wave or pulsed 900 MHz mobile phone RF energy at 1.6 W/kg did not cause chromosome damage.
  • 2003: Koyama et al [186] reported that exposure of mammalian cells to continuous wave 2450 MHz RF energy did not produce or enhance genotoxic injury (micronucleus formation) unless the SAR exceeded 50 W/kg.

In contrast, a few post-2002 studies have reported some evidence for RF exposure might damage DNA (but again also see "What's New"):

  • 2004: Trosic et al [223] exposed rats to 2450 MHz RF energy at 5-10 mW/cm-sq for 2 hr/day for up to 30 days (SARs were estimated to be 0.9-1.6 W/kg). An increase in micronucleus incidence was seen in bone marrow cells after 15 days; no changes in micronucleus incidence were found after longer or shorter treatments.
  • 2003: Mashevich et al [156] reported that exposure of human white blood cells to thermal levels of RF energy caused genomic instability, but that similar genomic instability was not caused by another method of heating.

In a review published in late 2003, Meltz [185m] concluded that:

"The weight of evidence available indicates that, for a variety of frequencies and modulations with both short and long exposure times, at exposure levels that do not (or in some instances do) heat the biological sample such that there is a measurable increase in temperature, RF exposure does not induce (a) DNA strand breaks, (b) chromosome aberrations, (c) sister chromatid exchanges (SCEs), (d) DNA repair synthesis, (e) phenotypic mutation, or (f) transformation (cancer-like changes). While there is limited experimental evidence that RF exposure induces micronuclei formation, there is abundant evidence that it does not. There is some evidence that RF exposure does not induce DNA excision repair, suggesting the absence of base damage. There is also evidence that RF exposure does not inhibit excision repair after the induction of thymine dimers by UV exposure, as well as evidence that indicates that RF is not a co-carcinogen or a tumor promoter."

In a review published in 2004, Vijayalaxmi and Obe [224] summarized the genotoxicity data:

"During the years 1990-2003 a large number of investigations were conducted using rodents, cultured rodent and human cells, and freshly collected human blood lymphocytes to determine the genotoxic potential of exposure to radiofrequency (RF) radiation. The results of most of these studies (58%) did not indicate increased damage to the genetic material (assessed from DNA strand breaks, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges) in cells exposed to RF radiation compared to sham-exposed and/or unexposed cells. Some investigations (23%) reported an increase in such damage in cells exposed to RF radiation. The observations from other studies (19%) were inconclusive..."
"The data from a well coordinated, multicenter collaborative studies with adequate statistical power will be needed to identify the factors contributing to these controversial observations about the genotoxic potential of RF radiation. Such studies probably will require RF-radiation exposures to be conducted in a single laboratory with SAR levels in the range of 1-5 W/kg, with adequate temperature controls and validated dosimetry. Multiple genotoxicity end points (e.g. chromosomal aberrations, micronuclei and SCE) and multiple cell types of human origin (e.g. blood lymphocytes, fibroblasts and tumor cells) should be examined. It may also be valuable to examine cells with different genetic backgrounds (e.g. normal, heterozygous and homozygous for AT gene)."

23D) The 2004 report from the European Union suggesting that mobile phone RF energy is genotoxic (the REFLEX report).

In late 2004, the European Union released a 259 page document (called the REFLEX report) which summarizes a series of studies that it had funded on the genotoxic potential of RF energy and power-frequency fields. Some evidence for genotoxicity was reported under some conditions and for some endpoints in some cell lines. Most of the work has not yet appeared in the peer-reviewed literature.
The report is on line at: http://www.itis.ethz.ch/downloads/REFLEX_Final%20Report_171104.pdf

In summary:

  • The report covers multiple projects from at least 12 different groups looking at multiple endpoints (genotoxicity, proliferation, differentiation, apoptosis, gene expression) in cell culture.
  • No whole animal studies are included.
  • The exposures include both power-frequency fields and RF energy, in a wide range of exposure regimens.
  • For RF energy, some investigators report evidence of genotoxicity (DNA strand breaks and chromosome aberrations) in some, but not all, cell lines.
  • The increases in DNA strand breaks and chromosome aberrations were dependent on the intensity and duration of the RF exposure, and possibly on the type of RF signal.
  • The minimum SAR for the genotoxic effects appears to be in 0.2-1.3 W/kg range, but there are no clear exposure-response relationships at higher SARs
  • All of the positive findings are contradicted by multiple previous peer-reviewed studies.
  • Whether the positive findings were more common than expected from random chance is hard to tell (false positive rates from cellular genotoxicity tests can be as high as 20%).

The conclusion of the report is:

"Taken together, the results of the REFLEX project were exclusively obtained in in vitro studies and are, therefore, not suitable for the conclusion that RF-EMF exposure below the presently valid safety limits causes a risk to the health of people. They move, however, such an assumption nearer into the range of the possible. Furthermore, there exists no justification anymore to claim, that we are not aware of any pathophysiological mechanisms which could be the basis for the development of functional disturbances and any kind of chronic diseases in animal and man."

24) Does the human body produce more RF energy than a person would get near a mobile phone base station?

This claim has been made, and while it is true in a narrow technical sense, the comparison is rather misleading.

For example, in a 2003 Consumer Fact Sheet, the Australian Communications authority wrote:

"All objects with a temperature above -273° C radiate [electromagnetic radiation] of all wavelengths, which is called blackbody radiation. Part of this radiation occurs in the microwave spectrum. The microwave component of the blackbody radiation from the human body is calculated to be around 0.3 [microW/cm-sq]. When the average measured emission levels at a distance of 200 metres from a 3G base station are compared with human body blackbody emissions, they are about 0.015 [microW/cm-sq], or twenty times less."

The above calculation is only correct if you add up all the blackbody radiation produced by the human body below 300 GHz (300,000 MHz). What makes the comparison misleading is that almost all of that blackbody radiation is produced at the upper end of that frequency range (approaching infra-red light), far above the frequencies used by mobile phones.

The actual blackbody radiation produced by a human over the frequency range used by mobile telecommunications (0.5-2.4 GHz, 500-2400 MHz) is less than 0.00001 microW/cm-sq.


25) Where can I get more information?

The documentation of the various RF standards [3, 4, 5 and 200] contain extensive references. Reasonably up-to-date reviews of this area include:


26) Who wrote these Questions and Answers?

This FAQ sheet was written by Dr. John Moulder, Professor of Radiation Oncology, Radiology and Pharmacology/Toxicology at the Medical College of Wisconsin. Dr. Moulder has taught, lectured and written on the biological effects of non-ionizing radiation and electromagnetic fields since the late 1970's.

The original version of this FAQ was written in 1995 under a contract with the City of Brookfield, Wisconsin. The FAQ was maintained and expanded after 1995 as a teaching aid at the Medical College of Wisconsin. The development and maintenance of this document was not supported by any person, agency, group or corporation outside the Medical College of Wisconsin.

 

In August 2005, Dr. Moulder became Director of the NIH-funded Medical College of Wisconsin Center for Medical Countermeasures Against Radiological Terrorism. This new job did not leave him the time required to keep these FAQs up-to-date. There is no version more up-to-date that this version. Parts of this FAQ were derived from the following peer-reviewed publications:

  • KR Foster, LS Erdreich, JE Moulder: Weak electromagnetic fields and cancer in the context of risk assessment. Proc. IEEE, 85:733-746, 1997.
  • JE Moulder: Power-frequency fields and cancer. Crit. Rev. Biomed. Eng. 26:1-116, 1998.
  • JE Moulder, LS Erdreich, RS Malyapa, J Merritt, WF Pickard, Vijayalaxmi: Cell phones and cancer: What is the evidence for a connection? Radiat. Res., 151:513-531, 1999.
  • KR Foster and JE Moulder: Are mobile phones safe? IEEE Spectrum, August 2000, pp 23-28.
  • KR Foster and JE Moulder: Mobiles et cancer, un vrai casse-tête. La Recherche 337:39-47, 2000.
  • KR Foster, P Vecchia et al: Effetti sulla salute dei telefoni mobili. AEI 87:36-41, 2000.
  • JE Moulder: Radiaciones de Radiofrecuencias y Cancer: Efectos Biologicos y Posibles Mecanismos. In: P. Gil-Loyzaga and A. Ubeda Eds., Ondas Electromagneticas y Salud, Informes Sanitarios, Siglo XXI, No. 1, Madrid, Spain, pp: 287-336, 2002.
  • JE Moulder: Mobile phones and cancer. Radiat. Prot. Austral. 19:87-95, 2003.
  • JE Moulder, KR Foster, LS Erdreich, JP McNamee: Mobile phones, mobile phone base stations, and cancer: A review. Int J Rad Biol 81:189-203, 2005.

Technical Notes:

1) PCS (Personal Communication Systems) phones in the U.S. are hand-held two-way radios that use a digital, rather than the analog transmission system used by older "cell phones". In the U.S., most of the older mobile phones operate at 860-900 MHz, while PCS phones operate at 1800-2200 MHz. In appearance, cellular and PCS phones and their base station antennas are similar. In the U.S., "cordless" phones operate at frequencies ranging from 45 to 2500? MHz, and "citizens band (CB)" two-way radios operate at about 27 MHz. Some cordless phones operate at power levels that equal or exceed some mobile phones.

Around the world a variety of other frequencies are used for both analog and digital hand-held transceivers and mobile radios, and other names are given to the systems (see Table 1 in Stuchly [61] for details). The most common frequencies are 800-900 MHz (analog and digital) and 1800-2200 MHz (digital); but hand-held transceivers exist that use frequencies from as low as 45 MHz to as high as 2500 MHz. Power output from hand-held units seldom exceeds 2 W, but power output from vehicle-mounted units such as those used by law enforcement personnel can be as high as 100 W.

 

2) For a detailed discussion of the biological effects of power-frequency fields, see: JE Moulder: Power-frequency fields and cancer. Crit Rev Biomed Engineering 26:1-116, 1998.

3) IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, IEEE Std C95.1-1991 (1999 Edition), The Institute of Electrical and Electronics Engineers, New York, 1999.

4) International Commission on Non-Ionizing Radiation Protection: Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields. Health Phys 74:494-522, 1998.

5) National Council on Radiation Protection and Measurements: Biological effects and exposure criteria for radiofrequency electromagnetic fields. NCRP Report No. 86, 1986.

6) The biological effects of RF energy depend on the rate at which power is absorbed [185b, 185c]. This rate of energy absorption is called the Specific Absorption Rate (SAR) and is measured in watts/kilogram (W/kg). SARs are difficult to measure on a routine basis, so what is usually measured is the plane wave power density. Average whole body SARs can then be calculated from the power density exposure (see Stuchly [61] for details).

In this document power density is given in mW/cm-sq (milliwatts per square centimeter). Power density can be expressed in several other ways:

W/m-sq (watts per square meter), where 10 W/m-sq = 1 mW/cm-sq
µW/cm-sq (microwatts per square centimeter), where 1000 µW/cm-sq = 1 mW/cm-sq
nW/cm-sq (nanowatts per square centimeter), where 1000 nW/cm-sq = 1 µW/cm-sq

7) The power density guidelines are stricter for some frequencies than for others because humans absorb RF energy more at 860 MHz than at 1800 MHz, and it is the amount of power absorbed that really matters [6].

8) Specifically, the ICNIRP standard is 0.40 mW/cm-sq at 800 MHz and 0.90 mW/cm-sq at 2000 MHz, while the NCRP guidelines are 0.57 mW/cm-sq and 1.00 mW/cm-sq for these same frequencies.

9) Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation (FCC 96-326), Federal Communications Commission, Washington, D.C., 1996. Available from the FCC web page.

10) International note -- Standards for public exposure to RF energy from mobile phone base station antennas in countries other than the U.S. This list is not comprehensive or necessarily up-to-date; the information should be checked with the appropriate regulatory authorities in each country. Also see Erdreich and Klauenberg [108].

  • Australian standard: The 2003 Australian standard is:
    Maximum Exposure Levels to Radiofrequency Fields - 3 kHz to 300 GHz. Australian Radiation Protection and Nuclear Safety Agency, 2003. It is online at: http://www.arpansa.gov.au/pubs/rps/rps3.pdf
    A companion Q and A document is on-line at: http://www.arpansa.gov.au/pubs/rps/rfqa.pdf
    With respect to public exposure to RF energy from mobile phone base stations the Australian standard appears to be largely (if not completely) in agreement with the ICNIRP Guidelines [4].
  • New Zealand standard: The 1999 New Zealand standard is:
    NZS 2772.1:1999 Radiofrequency fields - Part 1: Maximum exposure levels - 3 kHz to 300 GHz.
    With respect to public exposure to RF energy from mobile phone base stations the New Zealand standard appears to be largely (if not completely) in agreement with the ICNIRP Guidelines [4]. Also relevant is the "National guidelines for managing the effects of radiofrequency transmitters" from the New Zealand Ministry for the Environment. It is on-line at: http://www.mfe.govt.nz/publications/rma/radio-freq-guidelines-dec00.html
  • Canadian standard: [Health Canada: Limits of human exposure to radiofrequency electromagnetic fields at frequencies from 3 kHz - 300 GHz Safety Code 6, Radiation Protection Bureau of Health Canada, 1999)] At the frequencies of relevance to base stations the Canadian standard appears to be identical to the FCC standard.
  • UK standard: In mid-2000 the UK stopped using its own standard for mobile phones and mobile phone base stations and adopted the ICNIRP standard [8].
  • Greek standard [Measures for protection of the public from operation of land-installed antennas. Athens, Hellenic Republic, 2000]: The standard is essentially identical to ICNIRP [4] standard.
  • Swiss standard [Regulation about Protection against Nonionizing Radiation. Swiss Federal Council, 1999]: For mobile phone base stations the standard is 4.0 V/m (0.0042 mW/cm-sq) at 900 MHz and 6.0 V/m (0.0095 mW/cm-sq) at 1800 MHz. For broadcast radio (and TV?) the standard is 3.0-8.5 V/m (0.0024-0.019 mW/cm-sq). The scientific basis for this standard is unclear.
  • Italian standard: Ministero Dell'Ambientem, Decreto 10 Settembre 1998, n. 381, Regolamento recante norme per la determinazione dei tetti di radiofrequenza compatibili con la salute umana.
    At mobile phone frequencies the standard appears to be 0.10 mW/cm-sq. For situations where exposure is expected to exceed 4 hours/day, the limit appears are further reduced to 0.010 mW/cm-sq. Local regional administrations appear to have the authority to further reduce these limits, and several regions appear to have limits 4 times lower (0.0025 mW/cm-sq). The scientific basis for this standard is unclear.

11) Where there are multiple transmitting antennas at different frequencies, the method for assuring adherence to the ANSI/IEEE [3] or FCC [9] standards is complex. However, there is also an easy way to check adherence under these conditions: add the power densities of all the antennas and apply the strictest power density standard. Anything which passes this easy check will pass the more stringent and complex test. Something that fails this easy check must be analyzed by the more stringent and complex method described in the IEEE/FCC/ICNIRP standards.

12) Specifically, no potentially-hazardous effects have been consistently shown below a SAR of 4 W/kg [185a].
- At mobile phone frequencies it would require a power density of 20-100 mW/cm-sq to achieve a SAR as high as 4 W/kg.
- Under worst-case assumptions (multiple low-gain, high-ERP antennas), the SAR of a human in publicly-accessible locations near a FCC-compliant base station would be less than 0.01 W/kg.
- Under realistic conditions the SAR to a human near such a base station would be less than 0.0005 W/kg.

13) ANSI, ICNIRP and NCRP all agree that whole body exposure of the general public should be kept below a whole body SAR of 0.08 W/kg. Where the standards disagree is about the specific relationship of SAR to power-density, a relationship that is determined from a combination of dosimetry and biophysical modeling.

14) For the high-gain sector antennas used by most newer base stations, the area of concern is only at the front of the antennas. For the low-gain antennas used in many older base stations, the area of concern would be in all directions. This differences becomes clearer after an examination of the RF patterns from each type of antenna (see Q14D). Unfortunately, the RF energy pattern and gain for an antenna cannot always be determined from looking at it.

These general statements about minimum safe distances assume that total ERPs per sector for base station antennas will not exceed 2000 W. In the U.S., this is generally the case; and under the U.S. FCC guidelines, sites with total ERPs above 2000 W will require specific site evaluations [see note 15].

International note: More powerful antennas may be used elsewhere, in which case the minimum safe distances would be larger. Minimum safe distances will also be larger when there are multiple antennas broadcasting in the same sector.

15) Specifically, the 1996 FCC regulations require evaluations for:

  • non-rooftop 1800-2000 MHz base station antennas less than 10 meters (30 feet) off the ground and with a total ERP of greater than 2000 W (3280W EIRP);
  • rooftop 1800-2000 MHz base station antennas with a total ERP of greater than 2000 W (3280W EIRP).
  • non-rooftop 800-900 MHz base station antennas less than 10 meters (30 feet) off the ground and with a total ERP of greater than 1000 W (1640W EIRP);
  • rooftop 800-900 MHz base station antennas with a total ERP of greater than 1000 W (1640W EIRP)
  • see Q14C for a discussion of ERP

"rooftop" is defined as: "the roof or otherwise outside, topmost level or levels of a building structure that is occupied as a work place or residence and where either workers or the general public may have access." I would assume that a mount on a water tower would be considered "non-rooftop"
"total power" is defined as: "the sum of the ERP or EIRP of all co-located simultaneously operating transmitters of the facility. When applying the [exclusion] criteria, radiation in all directions should be considered. For the case of transmitting facilities using sectorized transmitting antennas, applicants and licensees should apply the criteria to all transmitting channels in a given sector, noting that for a highly directional antenna there is relatively little contribution to ERP or EIRP summation for other directions."

In June 2003, the FCC proposed changes in the rules for which types of bases stations would require RF exposure evaluations (Docket Number 30-137). There are clearly some editing/typographical errors in the part of the proposal that affects RF energy standards for base stations. A preliminary reading of the proposed rules indicates that evaluations would be required in the following situations:

  • At frequencies below 1500 MHz:
    • Base stations with a "separation distance" of less than 3 meters (10 ft) regardless of "total power", except for the exclusion of certain "micro" transmitters (see below).
    • Base stations with a "separation distance" of less than 10 meters (33 ft) if the "total power" is greater than or equal to 100 W.
  • At frequencies of 1500 MHz and above:
    • Base stations with a "separation distance of less than 3 meters (10 ft) regardless of "total power", except for the exclusion of certain "micro" transmitters (see below).
    • Base stations with a "separation distance" of less than 10 meters (33 ft) if the "total power" is greater than or equal to 200 W.
  • "Micro" base transmitters would be exempt if their "total power" was below 3 W, and they were designed to keep people more than 20 cm from the radiating structure.

"Separation distance" is defined as: "the minimum distance from any part of the radiating structure of a transmitting antenna in any direction to any area that may be entered by a member of the general public".
"Total power" was not explicitly defined (there are clearly some editing errors in this part of the FCC proposal): it was probably meant to be defined as the "total power of the transmit operation in terms of effective radiated power... of all co-located simultaneously operating transmitters owned and operated by a single licensee."
Note: This definition of total power would be different than that of the current regulations in that it applies only to a single operator, rather than the sum of all co-located antennas at a site. This may also be editing error.

International note: Strictly speaking, these criteria only apply in the U.S. Nevertheless, they are useful criteria for determining what types of antenna sites are most likely to violate RF standards.

16) One distinction that is often made in discussions of the biological effects of RF energy is between "nonthermal" and "thermal" effects. This refers to the mechanism for the effect: non-thermal effects are a result of a direct interaction between the RF energy and the organism, and thermal effects are a result of heating. There are some reported biological effects of RF energy whose mechanisms are unknown, and it is difficult (and not very useful) to try to draw a distinction between "thermal" and "nonthermal" mechanisms for such effects. Also see Valberg [20], Foster [82], Pickard and Moros [104] and Adair [154].

17) These effects have included changes in the electrical activity of the brain, changes in enzyme activity, and changes in calcium ion transport across membranes [for details see 3, 4, 5 and 200]. Also see Hyland [93].

18) The increased human absorption at 900 MHz (U.S. analog mobile phone frequency) versus 2000 MHz (U.S. PCS phone frequency) applies to whole body exposure at a distance from the antenna (the case for public exposure near a base station antenna site). This difference may not apply to partial body exposures in very close proximity to an antenna.

19) WR Adey, CV Byus et al: Spontaneous and nitrosourea-induced primary tumors of the central nervous system in Fischer 344 rats chronically exposed to 836 MHz modulated microwaves. Radiat Res 152:293-302, 1999.

20) PA Valberg: Radio frequency radiation (RFR): the nature of exposure and carcinogenic potential. Cancer Causes Control 8:323-332, 1997.

21) Human Exposure to Radio Frequency and Microwave Radiation from Portable and Mobile Telephones and Other Wireless Communication Devices, A COMAR Technical Information Statement. IEEE Eng Med Biol, Jan/Feb 2001, pp 128-131. Online at:
http://ewh.ieee.org/soc/embs/comar/phone.htm

22) Safety Issues Associated With Base Stations Used for Personal Wireless Communications, A COMAR Technical Information Statement. IEEE Eng Med Biol, Mar/Apr 2001, pp 110-114. Online at:
http://ewh.ieee.org/soc/embs/comar/base.htm

23) B Hocking et al: Cancer incidence and mortality and proximity to TV towers. Med J Austral 165:601-605, 1996.

24) JR Goldsmith: Epidemiologic evidence of radiofrequency (microwave) effects on health in military, broadcasting, and occupational studies. Int J Occup Environ Health 1:47-57, 1995.

25) H Lai and NP Singh: Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromag 16:207-210, 1995

26) H Lai and NP Singh: Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Rad Biol 69:513-521, 1996.

27) JK Grayson: Radiation exposure, socioeconomic status, and brain tumor risk in US Air Force: A nested case-control study. Amer J Epidem 143:480-486, 1996.

28) H Dolk et al: Cancer incidence near radio and television transmitters in Great Britain I. Sutton Coldfield Transmitter. Amer J Epidem 145:1-9, 1997.

29) H Dolk et al: Cancer incidence near radio and television transmitters in Great Britain. II. All high power transmitters. Amer J Epidem 145:10-17, 1997.

30) MH Repacholi et al: Lymphomas in Eµ-Pim1 Transgenic Mice Exposed to Pulsed 900 MHz Electromagnetic Fields. Rad Res 147:631-640, 1997.

31) CK Chou et al: Long-term, low-level microwave irradiation of rats. Bioelectromag 13:469-496, 1992.

32) MR Frei et al: Chronic exposure of cancer-prone mice to low-level 2450 MHz radiofrequency radiation. Bioelectromag. 19, 20-31, 1998.

33) JC Toler et al: Long-term low-level exposure of mice prone to mammary tumors to 435 MHz radiofrequency radiation. Rad Res 148:227-234, 1997.

34) DL Hayes et al: Interference with cardiac pacemakers by cellular telephones. New Eng J Med 336:1473-1479, 1997.

35) MR Frei et al: Chronic low-level (1.0 W/Kg) exposure of mammary cancer-prone mice to 2450 MHz microwaves. Rad Res 150:568-576, 1998.

36) AH Frey: Commentary: Headaches from cellular telephones: Are they real and what are the implications? Environ Health Perspect 106:101-103, 1998.

37) RS Malyapa et al: Measurement of DNA damage following exposure to 2450 MHz electromagnetic radiation. Rad Res 148:608-617, 1997.

38) RS Malyapa et al: Measurement of DNA damage following exposure to electromagnetic radiation in the cellular communications frequency band (835.62 and 847.74 MHz). Rad Res 148:618-627, 1997.

39) RS Malyapa et al: DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Rad Res 149:637-645, 1998.

40) WR Adey, CV Byus et al: Spontaneous and nitrosourea-induced primary tumors of the central nervous system in Fischer 344 rats exposed to frequency-modulated microwave fields. Cancer Res. 60:1857-1863, 2000.

41) KR Foster, LS Erdreich and JE Moulder: Weak electromagnetic fields and cancer In the context of risk assessment. Proc IEEE 85:731-746, 1997.

42) Measurements show that signal strength in a building is decreased by 60-95% compared to the level measured in the street outside. In general, signal attenuation is greater at ground level than higher up in the building, and attenuation is less at higher (1800-2000 MHz) frequencies than at lower (800-900 MHz) frequencies (JD Parsons, The Mobile Phone Propagation Channel, Wiley and Sons, NY, 1992).

43) A worst-case calculation (2000 W ERP low-gain antenna mounted directly on a low-attenuation roof) predicts a power density of less than 0.10 mW/cm-sq on the floor below. A calculation for a more typical roof-top mount (1000 W ERP high-gain antenna, mounted 2 meters above a typical roof) predicts a power density of less than 0.001 mW/cm-sq on the floor below.

Actual measurements in the top floor apartments of a building with high-gain sector base stations antennas mounted to the outside of the parapet just above the apartments found a maximum power density of 0.0004 mW/cm-sq [70]. Measurements in a corridor in the floor directly below a roof-top base station (antennas 3 meters above the main roof) found a maximum power density of 0.008 mW/cm-sq. Both maximums assume that the base stations are operating at their maximum capacity [70].

In 2000, NRPB (UK) [85] made measurements in multiple apartment buildings and schools that had a wide variety of mobile phone base station antennas on their roofs. On the top floor of these buildings the maximum RF power density from all sources combined was 0.0001 mW/cm-sq.

44) RY Wu et al: Effects of 2.45 GHz microwave radiation and phorbol ester 12-O-tetradecanoylphorbol-13-acetate on dimethylhydrazine -induced colon cancer in mice. Bioelectromag 15:531-538, 1994.

45) ED Mantiply et al: Summary of measured radiofrequency electric and magnetic fields (10 kHz to 30 GHz) in the general and work environment. Bioelectromag 18:563-577, 1997.

46) DR McKenzie et al: Childhood incidence of acute lymphoblastic leukemia and exposure to broadcast radiation in Sydney -- a second look. Aust New Zealand J Public Health 22:360-367, 1998.

47) K Imaida et al: Lack of promoting effects of the electromagnetic near-field used for cellular phones (929.2 MHz) on rat liver carcinogenesis in a medium-term liver bioassay. Carcinogenesis 19:311-314, 1998.

48) K Imaida et al: The 1.5 GHz electromagnetic near-field used for cellular phones does not promote rat liver carcinogenesis in a medium-term liver bioassay. Jap J Cancer Res 89:995-1002, 1998.

49) JF Spalding et al: Effects of 800-MHz electromagnetic radiation on body weight, activity, hematopoiesis and life span in mice. Health Phys 20:421-424, 1971.

50) S Szmigielski et al: Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2450 MHz microwave radiation. Bioelectromag 3:179-191, 1982.

51) CG Liddle et al: Alteration of life span of mice chronically exposed to 2.45 GHz CW microwaves. Bioelectromag 15:177-181, 1994.

52) CD Robinette et al: Effects upon health of occupational exposure to microwave radiation. Amer J Epidem 112:39-53, 1980.

53) DA Hill: Longitudinal study of a cohort with past exposure to radar: the MIT Radiation Laboratory follow-up study [dissertation], University of Michigan Dissertation Service, Ann Arbor, Michigan, 1988.

54) S Milham: Increased mortality in amateur radio operators due to lymphatic and hematopoietic malignancies. Amer J Epidem 127:50-54, 1988.

55) AM Lilienfeld et al: Foreign Service Health Status Study - Evaluation of Health Status of Foreign Service and Other Employees from Selected Eastern European Posts. Final Report, Contract No. 6025-619073, United States Department of Health, Washington, D.C., 1978.

56) S Lagorio et al: Mortality of plastic-ware workers exposed to radiofrequencies. Bioelectromag 18:418-421, 1997.

57) JM Muhm: Mortality investigation of workers in an electromagnetic pulse test program. J Occup Med 34:287-292, 1992.

58) T Tynes et al: Incidence of cancer in Norwegian workers potentially exposed to electromagnetic fields. Amer J Epidem 136:81-88, 1992.

59) MH Repacholi: Radiofrequency field exposure and cancer: What do the laboratory studies suggest? Environ Health Perspect 105:1565-1568, 1997.

60) RC Petersen et al: Radio-frequency electromagnetic fields associated with cellular-radio cell-site antennas. Bioelectromag 13:527-542, 1992.

61) MA Stuchly: Biological concerns in wireless communications. Crit Rev Biomed Eng 26:117-151, 1998.

62) J Juutilainen and R de Seze: Biological effects of amplitude-modulated radiofrequency radiation. Scand J Work Environ Health 24:245-254, 1998.

63) JM Elwood: A critical review of epidemiologic studies of radiofrequency exposure and human cancers. Environ Health Perspect 107(Suppl. 1):155-168, 1999.

64) JE Moulder, LS Erdreich et al: Cell phones and cancer: What is the evidence for a connection? Radiat. Res., 151:513-531, 1999.
On line version available.

65) JA D'Andrea: Behavioral evaluation of microwave irradiation. Bioelectromag 20:64-74, 1999.

66) AW Preece, G Iwi et al: Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol 75:447-456, 1999.

67) RD Saunders, CI Kowalczuk et al: Studies on the induction of dominant lethals and translocations in male mice after chronic exposure to microwave radiation. Int J Radiat Biol 53:983-992, 1988.

68) Royal Society of Canada: A review of the potential risks of radiofrequency fields from wireless telecommunication devices. Royal Society of Canada, Ottawa, Ont, 2000.
- Also published as: D Krewski, CV Byus et al: Potential health risks of radiofrequency fields from wireless telecommunication devices. J Toxicol Environ Health 4:1-143, 2001.
- An update published as: D Krewski, CV Byus et al: Recent advances in research on radiofrequency fields and health. J Toxicol Environ Health 4:145-159, 2001.

69) L Hardell, A Näsman et al: Use of cellular telephones and the risk of brain tumors: a case-control study. Int J Oncol 15:113-116, 1999.

70) RC Petersen, AK Fahy-Elwood et al: Wireless telecommunications: Technology and RF safety issues, In: "Non-Ionizing Radiation: An Overview of the Physics and Biology", KA Hardy, ML Meltz et al (editors), Medical Physics Publishing, Madison, WI, pp. 197-226, 1997.

71) LP Phillips, DB Blackwell et al: Genotoxicity of radio frequency radiation fields generated from analog, TDMA, CDMA and PCS technology evaluated using a three test in vitro battery. Environ Molec Mutagen 33 (Suppl. 30):49, 1999.

72) MV Vasquez, CJ Clancy et al: Genotoxicity of radio frequency radiation fields generated from analog, TDMA, CDMA and PCS in human blood cells evaluated using single gel (SCG) electrophoresis and the cytochalasin B micronucleus assay. Environ Molec Mutagen 33 (Suppl. 30):66, 1999.

73) BC Zook and SJ Simmens: The effects of 860 MHz radiofrequency radiation on the induction or promotion of brain tumors and other neoplasms in rats. Radiat Res 155:572-583, 2001.

74) TL Thomas, PD Stolley et al: Brain tumor mortality risk among men with electrical and electronics jobs: A case-control study. J Natl Cancer Inst 79:233-238, 1987.

75) JL Chagnaud, JM Moreau et al: No effect of short-term exposure to GSM-modulated low-power microwaves on benzo(a)pyrene-induced tumours in rat. Int J Radiat Biol 75:1251-1256, 1999.

76) R Higashikubo, VO Culbreth et al: Radiofrequency electromagnetic fields have no effect on the in vivo proliferation of the 9L brain tumor. Radiat Res 152:665-671, 1999.

77) RA Tell: Telecommunications Antenna Installation Guidelines, Richard Tell Associates, Las Vegas, 1996. Available from CTIA, 1250 Connecticut Ave, NW, Suite 200, Washington, DC, 20036.

78) RW Morgan, MA Kelsh et al: Radiofrequency exposure and mortality from cancer of the brain and lymphatic/hematopoietic systems. Epidemiology 11:118-127, 2000.

79) KJ Rothman, JE Loughlin et al: Overall mortality of cellular telephone customers. Epidemiology 7:303-305, 1996.

80) NA Dreyer, JE Loughlin, KJ Rothman: Cause-specific mortality in cellular telephone users. JAMA 282:1814-1816, 1999

81) A Thansandote, GB Gajda et al: Radiofrequency radiation in five Vancouver schools: exposure standards not exceeded. Can Med Assoc J 160:1311-1312, 1999.

82) KR Foster: The mechanism paradox: Constraints on interactions between radiofrequency fields and biological systems; in M Moriarty, C Mothersill et al (eds): 11th Int Cong Radiat Res. Lawrence, KS, Allen Press, Inc., 2000, pp 222-226.

83) GI Reeves: Review of extensive workups of 34 patients overexposed to radiofrequency radiation. Aviat Space Environ Med 71:206-215, 2000.

84) Independent Expert Group on Mobile Phones: Report on Mobile Phones and Health. Chilton, Natl Radiol Protec Board, 2000. Online at: http://www.iegmp.org.uk/report/text.htm.

85) SM Mann, TG Cooper et al: Exposure to radio waves near mobile phone base stations. Natl Radiol Protec Board (U.K.), June 2000.

86) KR Foster and JE Moulder: Are mobile phones safe? IEEE Spectrum, August 2000, pp 23-28. Online at: http://www.spectrum.ieee.org/publicfeature/aug00/prad.html

87) G Tsurita, H Nagawa et al: Biological and morphological effects on the brain after exposure of rats to a 1439 MHz TDMA field. Bioelectromag 21:364-371, 2000.

88) National Council on Radiation Protection and Measurements (U.S.): A practical guide to the determination of human exposure to radiofrequency fields. NCRP Report No. 119. Bethesda, MD, National Council on Radiation Protection and Measurements (U.S.), 1993.

89) RF Cleveland and JL Ulcek: Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fields. OET Bulletin 56, 1999. On line at: http://www.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet56e4.pdf

90) FH Grant and RE Schlegel: Effects of increased air gap on the in vitro interaction of wireless phones with cardiac pacemakers. Bioelectromag 21:485-490, 2000.

91) JE Muscat, MG Malkin et al: Handheld cellular telephone use and risk of brain cancer. JAMA 284:3001-3007, 2000.

92) KJ Rothman: Epidemiological evidence on health risks of cellular telephones. Lancet 356:1837-1840, 2000.

93) GJ Hyland: Physics and biology of mobile telephony. Lancet 356:1833-1836, 2000.

94) SE Chia, HP Chia et al: Prevalence of headache among handheld cellular telephone users in Singapore: A Community study. Environ Health Perspect 108:1059-1062, 2000.

95) PD Inskip, RE Tarone et al: Cellular-telephone use and brain tumors. NEJM 344:79-86, 2001.

96) P Bernardi, M Cavagnaro et al: Human exposure to radio base-station antennas in urban environment. IEEE Trans Micro Theory Tech 48:1996-2002, 2000.

97) Vijayalaxmi, WF Pickard et al: Cytogenetic studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FDMA). Radiat Res 155:113-121, 2001.

99) A Stang, G Anastassiou et al: The possible role of radiofrequency radiation in the development of uveal melanoma. Epidemiol 12:7-12, 2001.

100) G Oftedal, J Wilén et al: Symptoms experienced in connection with mobile phone use. Occup Med 50:237-245, 2000.

101) C Johansen, JD Boice et al: Cellular telephones and cancer -- a nationwide cohort study in Denmark. J Natl Cancer Inst 93:203-207, 2001.

102) JR Jauchem, KL Ryan et al: Repeated exposure of C3H/HeJ mice to ultra-wideband electromagnetic pulses: Lack of effects on mammary tumors. Radiat Res 155:369-377, 2001.

104) WF Pickard and EG Moros: Energy deposition processes in biological tissue: Nonthermal biohazards seem unlikely in the ultra-high frequency range. Bioelectromag 22:97-105, 2001.

105) RB Stagg, L Hawel et al: Effect of immobilization and concurrent exposure to a pulse-modulated microwave field upon core body temperature, plasma ACTH and corticosteroid and brain ornithine decarboxylase, c-Fos, and c-jun mRNA. Radiat Res 155:584-592, 2001.

106) M Sandström, J Wilén et al: Mobile phone use and subjective symptoms. Comparison of symptoms experienced by users of analogue and digital mobile phones. Occup Med 51:25-35, 2001.

107) H Frumkin, A Jacobson et al: Cellular phones and risk of brain tumors. CA Cancer J Clin 51:137-141, 2001.

108) LS Erdreich and BJ Klauenberg: Radio frequency radiation exposure standards: Considerations for harmonization. Health Phys 80:430-439, 2001.

109) MH Repacholi: Health risks from the use of mobile phones. Toxicol Let 120:323-331, 2001.

112) JW Finnie, PC Blumbergs et al: Effect of Global System for Mobile Communication (GSM)-like radiofrequency fields on vascular permeability in mouse brain. Pathology 33:338-340, 2001.

113) J Schuz and S Mann: A discussion of potential exposure metrics for use in epidemiological studies on human exposure to radiowaves from mobile phone base stations. J Expo Anal Environ Epidemiol 10:600-605, 2000.

114) P Heikkinen, V-M Kosma et al: Effects of mobile phone radiation on X-ray-induced tumorigenesis in mice. Rad Res 156:775-785, 2001.

116) PA Mason, TJ Walters et al: Lack of effect of 94 GHz radio frequency radiation exposure in an animal model of skin carcinogenesis. Carcinogenesis 22:1701-1708, 2001.

117) K Imaida, K Kuzutani et al: Lack of promotion of 7,12-dimethylbenz [a]anthracene-initiated mouse skin carcinogenesis by 1.5 GHz electromagnetic near fields. Carcinogenesis 22:1837-1841, 2001.

118) Les Téléphones Mobiles, leurs Stations de Base et la Santé, Directeur Général de la Santé, Paris, 2001.

119) G d'Ambrosio, R Massa et al: Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromag 23:7-13, 2002.

120) H Bartsch, C Bartsch et al: Chronic exposure to a GSM-like signal (mobile phone) does not stimulate the development of DMBA-induced mammary tumors in rats: Results of three consecutive studies. Rad Res 157:183-190, 2002.

121) RR Tice, GG Hook et al: Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromag 23:113-126, 2002. 129:203-210, 2002.

124) Mobile telephones: an evaluation of health effects. The Hague, Health Council of the Netherlands, 2002. On line at: http://www.gr.nl/pdf.php?ID=377.

125) GSM Base Stations. The Hague, Health Council of the Netherlands, 2000. On line at: http://www.gr.nl/pdf.php?ID=34.

126) FD Groves, WF Page et al: Cancer in Korean War navy technicians: Mortality survey after 40 years. Amer J Epidem 155:810-818, 2002.

127) JE Muscat, MG Malkin et al: Handheld cellular telephones and risk of acoustic neuroma. Neurology 58:1304-1306,2002.

128) Cell Phone Facts: Consumer Information on Wireless Phones, Food and Drug Administration and the Federal Communications Commission. On line at: http://www.fda.gov/cellphones/.

129) S Takahashi, S Inaguma et al: Lack of mutation induction with exposure to 1.5 GHz electromagnetic near fields used for cellular phones in brains of big blue mice. Cancer Res 62:1956-1960, 2002.

130) S Bisht, EG Moros et al: The effect of 835.62 MHz FDMA or 847.74 MHz CDMA modulated radiofrequency radiation on the induction of micronuclei in C3H 10T1/2 cells. Rad Res 157:506-515, 2002.

132) A Auvinen, M Hietanen et al: Brain tumors and salivary gland cancers among cellular telephone users. Epidemiology 13:356-359, 2002.

134) O Hallberg and O Johansson: Melanoma incidence and frequency modulation (FM) broadcasting. Arch Environ Health 57:32-40, 2002.

135) P Michelozzi, A Capon et al: Adult and childhood leukemia near a high-power radio station in Rome, Italy. Amer J Epidemiol 155:1096-1103, 2002.

136) TD Utteridge, V Gebski et al: Long-term exposure of Eµ-Pim1 transgenic mice to 898.4 MHz microwaves does not increase lymphoma incidence. Radiat Res 158:357-364, 2002.

137) L Hardell, A Hallquist et al: Cellular and cordless telephones and the risk for brain tumors. Eur J Cancer Prev 11:377-386, 2002.

138) M Blettner, J Michaelis and J Wahrendorf: Workshop on research into the health effects of cellular telephones. Epidemiol 11:609-611, 2000.

142) JC Lin: Microwave exposure and safety associated with personal wireless telecommunication base stations. IEEE Microwave Mag 3 (Sept):28-32, 2002

143) JD Boice JD and JK McLaughlin: Epidemiological studies of cellular telephones and cancer risk -- A review. Stockholm, Swedish Radiation Protection Authority, 2002.
On line at: http://www.ssi.se/ssi_rapporter/pdf/ssi_rapp_2002_16.pdf

144) JW Finnie, PC Blumbergs et al: Effect of long-term mobile communication microwave exposure on vascular permeability in mouse brain. Pathology 34:344-347, 2002.

145) Christopher Newman et al vs Motorola, Inc et al. Baltimore, U S District Court for the District of Maryland, 2002. On line at: http://www.mdd.uscourts.gov/Opinions152/Opinions/newman0902.pdf
Also on-line is the Court of Appeals ruling that upheld the District Court decision:
http://pacer.ca4.uscourts.gov/opinion.pdf/022424.U.pdf

146) JP McNamee, PV Bellier et al: DNA damage and micronucleus induction in human leukocytes after acute in vitro exposure to a 1.9 GHz continuous-wave radiofrequency field. Rad Res 158:523-533, 2002.

147) JP McNamee, PV Bellier et al: DNA damage in human leukocytes after acute in vitro exposure to a 1.9 GHz pulse-modulated radiofrequency field. Rad Res 158:534-537, 2002.

148) L Hardell, KH Mild et al: Case-control study of the use of cellular and cordless phones and the risk of malignant brain tumours. Int J Rad Biol 78:931-936, 2002.

149) M Parascandola: Judge rejects cancer data in Maryland cell phone suit. Science 298:338, 2002.

151) National guidelines for managing the effects of radiofrequency transmitters. New Zealand Ministry for the Environment, Dec 2000. On line at: http://www.mfe.govt.nz/publications/rma/radio-freq-guidelines-dec00.html

154) RK Adair: Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromag 24:39-48, 2003.

155) Five letters to the editor concerning Utteridge et al [136] and authors' response. Radiat Res 159:274-278, 2003; Radiat Res 159:835-836, 2003; Rad Res 160:613-614, 2003.

156) M Mashevich, D Folkman et al: Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromag 24:82-90, 2003.

157) I Trosic, I Busljeta et al: Micronucleus induction after whole-body microwave irradiation of rats. Mutat Res 521:73-79, 2002.

158) LG Salford, AE Brun et al: Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect 111:881-883, 2003.

159) L Hardell, KH Mild et al: Further aspects on cellular and cordless telephones and brain tumours. Int J Oncol 22:399-407, 2003.

160) L Hardell, KH Mild et al: Vestibular schwannoma, tinnitus and cellular telephones. Neuroepidemiology 22:124-129, 2003.

161) Vijayalaxmi, LB Sasser et al: Genotoxic potential of 1.6 GHz wireless communication signal: In vivo two-year bioassay. Radiat Res 159:558-564, 2003.

162) M Barbiroli, C Carciofi et al: Evaluation of exposure levels generated by cellular systems: methodology and results. IEEE Trans Vehicular Technol 51:1322-1329, 2002.

163) Wireless telecommunications radiofrequency safety issues for building owners and managers. U. S. National Council on Radiation Protection and Measurements, Bethesda, Dec 2002.

164) C Haarala, L Björnberg et al: Effect of a 902 MHz electromagnetic field emitted by mobile phones on human cognitive function: A replication study. Bioelectromag 24:283-288, 2003.

165) JP McNamee, PV Bellier et al: No evidence for genotoxic effects from 24 h exposure of human leukocytes to 1.9 GHz radiofrequency radiation. Radiat Res 159:693-697, 2003.

166) R Huber, J Schuderer et al: Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate. Bioelectromag 24:262-276, 2003.

167) H Yamaguchi, G Tsurita et al: 1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated. Bioelectromag 24:223-230, 2003.

168) Maximum Exposure Levels to Radiofrequency Fields - 3 kHz to 300 GHz. Australian Radiation Protection and Nuclear Safety Agency, 2003. Online at: http://www.arpansa.gov.au/pubs/rps/rps3.pdf
A companion Q and A document is on-line at: http://www.arpansa.gov.au/pubs/rps/rfqa.pdf

169) P Line, WA Cornelius et al: Levels of Radiofrequency Radiation from GSM Mobile Telephone Base Stations (Tech Rep 129). Australian Radiation Protection and Nuclear Safety Agency, 2000. On line at: http://www.arpansa.gov.au/pubs/eme_comitee/rfrep129.pdf

170) L Kheifets, M Repacholi, R Saunders: Thermal stress and radiation protection principles. Int J Hypertherm 19:215-224, 2003.

171) P Heikkinen, VM Kosma et al: Effects of mobile phone radiation on UV-induced skin tumourigenesis in ornithine decarboxylase transgenic and non-transgenic mice. Int J Rad Biol 79:221-233, 2003.

172) MW Dewhirst, M Lora-Michiels et al: Carcinogenic effects of hyperthermia. Int J Hypertherm 19:236-251, 2003.

173) MW Dewhirst, BL Viglianti et al: Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hypertherm 19:267-294, 2003.

174) O Zeni, AS Chiavoni et al: Lack of genotoxic effects (micronucleus induction) in human lymphocytes exposed in vitro to 900 MHz electromagnetic fields. Radiat Res 160:152-158, 2003.

175) M La Regina, EG Moros et al: The effect of chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiofrequency radiation on the incidence of spontaneous tumors in rats. Radiat Res 160:143-151, 2003.

176) TMC Lee, PK Lam et al: The effect of the duration of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport 14:1361-1364, 2003.

177) R Anane, PE Dulou et al: Effects of GSM-900 microwaves on DMBA-induced mammary gland tumors in female Sprague-Dawley rats. Rad Res 160:492-497, 2003.

178) Zwamborn APM, Vossen SHAH et al: Effects of Global Communication System radio-frequency fields on well being and cognitive function of human subjects with and without subjective complaints (Report FEL-03-C148). The Hague, The Netherlands, Netherlands Organization for Applied Scientific Research (TNO), 2003. On line at: http://www.tno.nl/tno/actueel/tno_nieuws/2004/onderzoek_tno_naar_effect/tno_fel_report_03148_def.pdf .

180) L Li, KS Bisht et al: Measurement of DNA damage in mammalian cells exposed in vitro to radiofrequency fields at SARs of 3–5 W/kg. Radiat Res 156:328-332, 2001.

181) L Gatta, R Pinto et al: Effects of in vivo exposure to GSM-modulated 900 MHz radiation on mouse peripheral lymphocytes. Rad Res 160:600-605, 2003.

182) AV Kramarenko and U Tan: Effects of high-frequency electromagnetic fields on human EEG: a brain mapping study. Int J Neurosci 113:1007-1019, 2003.

183) D Dubreuil, T Jay et al: Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat's memory in spatial and non-spatial tasks. Behav Brain Res 145:51-61, 2003.

184) J Bakos, G Kubinyi et al: GSM modulated radiofrequency radiation does not affect 6-sulfatoxymelatonin excretion of rats. Bioelectromag 24:531-534, 2003.

185) Reviews of the effects of RF fields on various aspects of human health. Bioelectromag Suppl 6, 2003.

  • 185a) CK Chou and JA D'Andrea: Reviews of effects of RF fields on various aspects of human health: Introduction. Bioelectromag Suppl 6:S5-S6, 2003.
  • 185b) JM Osepchuk and RC Petersen: Historical review of RF exposure standards and the International Committee on Electromagnetic Safety (ICES). Bioelectromag Suppl 6:S7-S16, 2003.
  • 185c) ER Adair and DR Black: Thermoregulatory responses to RF energy absorption. Bioelectromag Suppl 6:S17-S18, 2003.
  • 185d) JA D'Andrea, ER Adair et al: Behavioral and cognitive effects of microwave exposure. Bioelectromag Suppl 6:S39-S62 2003.
  • 185e) JM Elwood: Epidemiological studies of radio frequency exposures and human cancer. Bioelectromag Suppl 6:S63-S73, 2003.
  • 185f) LN Heynick, SA Johnston et al: Radio frequency electromagnetic fields: Cancer, mutagenesis, and genotoxicity. Bioelectromag Suppl 6:S74-S100, 2003.
  • 185g) JA Elder: Survival and cancer in laboratory mammals exposed to radiofrequency energy. Bioelectromag Suppl 6:S101-S106, 2003.
  • 185h) JA D'Andrea, CK Chou et al: Microwave effects on the nervous system. Bioelectromag Suppl 6:S107-S147, 2003.
  • 185i) JA Elder: Ocular effects of radiofrequency energy. Bioelectromag Suppl 6:S148-S161, 2003.
  • 185j) JA Elder and CK Chou: Auditory response to pulsed radiofrequency energy. Bioelectromag Suppl 6:S162-S173 2003.
  • 185k) LN Heynick and JH Merritt: Radiofrequency fields and teratogenesis. Bioelectromag Suppl 6:S174-S176, 2003.
  • 185l) DR Black and LN Heynick: Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions. Bioelectromag Suppl 6:S187-S195, 2003.
  • 185m) ML Meltz: Radiofrequency exposure and mammalian cell toxicity, genotoxicity, and transformation. Bioelectromag Suppl 6:S196-S213, 2003.

186) S Koyama, T Nakahara et al: Effects of high frequency electromagnetic fields on micronucleus formation in CHO-K1 cells. Mutat Res 541:81-89, 2003.

187) Advisory Group on Non-Ionizing Radiation (U.K.): Health effects from radiofrequency electromagnetic fields. Doc NRPB 14:1-177, 2003. On-line at: http://www.hpa.org.uk/radiation/publications/documents_of_nrpb/abstracts/absd14-2.htm.

188) CM Krause, C Haarala et al: Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory task: A double blind replication study. Bioelectromag 25:33-40, 2004.

189) BL Cobb, JR Jauchem et al: Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromag 25:49-57, 2004.

190) I Lagroye, GJ Jook et al: Measurement of alkali labile DNA damage and protein-DNA crosslinks following 2450 MHz microwave and low dose gamma irradiation in vitro. Radiat Res 161:201-214, 2004.

191) JH Hook, P Zhang et al: Measurement of DNA damage and apoptosis in Molt-4 cells following in vitro exposure to radiofrequency radiation. Radiat Res 161:193-200, 2004.

192) HC Christensen, J Schüz et al: Cellular telephone use and risk of acoustic neuroma. Am J Epidemiol 159:277-283, 2004.

193) I Lagroye, R Anane et al: Measurement of DNA damage after acute exposure to pulsed-wave 2450 MHz microwaves in rat brain cells by two alkaline comet assay methods. Int J Radiat Biol 80:11-20, 2004.

194) J Breckenkamp, G Berg et al: Biological effects on human health due to radiofrequency/microwave exposure: a synopsis of cohort studies. Radiat Environ Biophys 42:141-154, 2003.

195) A Anders, J Juutilainen et al: Recent research on mobile telephony and cancer and other selected biological effects: First annual report from SSI's Independent Expert Group on Electromagnetic Fields. Swedish Radiation Protection Authority, Stockholm, 2003.

196) A Ahlbom and M Feychting: Electromagnetic radiation. Brit Med Bull 68:157-165, 2003.

197) DL Hamblin, AW Wood et al: Examining the effects of electromagnetic fields emitted by GSM mobile phones on human event-related potentials and performance during an auditory task. Clin Neurophys 115:171-178, 2004.

198) K Tahvanainen, J Niño et al: Cellular phone use does not acutely affect blood pressure or heart rate in humans. Bioelectromag 25:73-83, 2004.

199) T Ono, Y Saito et al: Absence of mutagenic effects of 2.45 GHz radiofrequency exposure in spleen, liver, brain, and testis of lacZ-transgenic mouse exposed in utero. Tohoku J Exp Med 202:93-103, 2004.

200) AF McKinlay, SG Allen et al: Review of the scientific evidence for limiting exposure to electromagnetic fields (0-300 GHz). Doc NRPB 15:1-215, 2004.
On-line at: www.hpa.org.uk/radiation/publications/documents_of_nrpb/abstracts/absd15-3.htm

201) Biological effects of modulated radiofrequency fields (NCRP commentary No. 18). National Council on Radiation Protection and Measurements, Bethesda, MD, 2003.

202) M Kundi: Mobile phone use and cancer. Occup Environ Med 61:560-570, 2004.

203) LE Anderson, DM Sheen et al: Two-year chronic bioassay study of rats exposed to a 1.6 GHz radiofrequency signal. Rad Res 162:201-210, 2004.

204) SK Park, M Ha et al: Ecological study on residences in the vicinity of AM radio broadcasting towers and cancer death: preliminary observations in Korea. Int J Occup Environ Health 77:387-394, 2004.

205) C Haarala, M Ek et al: 902 MHz mobile phone does not affect short term memory in humans. Bioelectromag 25:452-566, 2004.

206) KR Foster and M Repacholi: Biological effects of radiofrequency fields: Does modulation matter? Rad Res 162:219-225, 2004.

207) R Maier, SE Greter et al: Effects of pulsed electromagnetic fields on cognitive processes - a pilot study on pulsed field interference with cognitive regeneration. Acta Neurol Scand 110:46-52, 2004.

208) L Hardell, A Hallquist et al: No association between the use of cellular or cordless telephones and salivary gland tumours. Occup Environ Med 61:675-679, 2004.

209) JK Gøtrik, J Laaksonen et al: Mobile Telephony and Health -- A common approach for the Nordic competent authorities. On line at: http://www.ssi.se/ickejoniserande_stralning/mobiltele/NordicMobilPress2004.pdf

210) S Lönn, A Ahlbom et al: Mobile phone use and the risk of acoustic neuroma. Epidemiol 15:653-659, 2004.

211) JC Lin: Microwave radiation and leakage of albumin from blood to brain. IEEE Micro Mag, Sep-2004, pp 22-27.

212) Directive 2004/40/EC of the European Parliament and of the Council of 29 April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Official J Europ Union L159:1-26, 2004.
On-line at: http://europa.eu.int/smartapi/cgi/sga_doc?smartapi!celexapi!prod!CELEXnumdoc&lg=EN&numdoc=32004L0040&model=guichett

213) B Hocking and I Gordon: Decreased survival for childhood leukemia in proximity to television towers. Arch Environ Health 58:560-564, 2003.

214) O Borraz, M Devigne et al: Controversy and protest around mobile phone antennas in France. Paris, Le Centre des Sociologie des Organizations, 2004.
On-line at: http://www.cso.edu/site/fiche_breve.asp?langue=en&br_id=70

215) L Anglesio, A Benedetto et al: Population exposure to electromagnetic fields generated by radio base stations: Evaluation of the urban background by using provisional model and instrumental measurements. Rad Protec Dosim 97:355-358, 2001.

216) D Cooper, K Hemmings et al: Re: "Cancer incidence near radio and television transmitters in Great Britain. I. Sutton Coldfield transmitter; II. All high power transmitters". Am J Epidem 153:202-204, 2001.

217) Mobile Phones and Health 2004: Report by the Board of NRPB. Documents of the NRPB 15:1-114, 2004.
On-line at: www.hpa.org.uk/radiation/publications/documents_of_nrpb/abstracts/absd15-5.htm

219) A Ahlbom, A Green et al: Epidemiology of health effects of radiofrequency exposure. Env Health Perspec 112:1741-1754, 2004.

220) G Curcio, M Ferrara et al: Time-course of electromagnetic field effects on human performance and tympanic temperature. Neuroreport 15:161-164, 2004.

221) Risk evaluation of potential environmental hazards from low-frequency electromagnetic field exposures using sensitive in vitro methods. European Union, 2004.

222) H Hinrichs and HJ Heinze: Effects of GSM electromagnetic field on the MEG during an encoding-retrieval task. Neuroreport 15:1191-1194, 2004.

223) I Trosic, I Busljeta et al: Investigation of the genotoxic effect of microwave irradiation in rat bone marrow cells: in vivo exposure. Mutagenesis 19:361-364, 2004.

224) Vijayalaxmi and G Obe: Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Rad Res 162:481-496, 2004.

225) A Besset, F Espa et al: No effect on cognitive function from daily mobile phone use. Bioelectromag 26:102-108, 2005.

226) K Hata, H Yamaguchi et al: Short term exposure to 1439 MHz pulsed TDMA field does not alter melatonin synthesis in rats. Bioelectromag 26:49-53, 2005.

227) S Lönn, A Ahlbom et al: Long-term mobile phone use and brain cancer risk. Am J Epidem 161:526-535, 2005.

228) T Shirai, M Kawabe et al: Chronic exposure to a 1.439 GHz electromagnetic field used for cellular phones does not promote N-ethylnitrosourea induced central nervous system tumors in F344 rats. Bioelectromag 26:59-68, 2005.

229) ZJ Sienkiewicz and CI Kowalczuk: A Summary of Recent Reports on Mobile Phones and Health (2000-2004). Chilton, National Radiological Protection Board, 2005.
On-line at: http://www.hpa.org.uk/radiation/publications/w_series_reports/2005/nrpb_w65.htm

230) B Cosquer, R Galani et al: Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res 2004.

231) R Huber, V Treyer et al: Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. Eur J Neurosc 21:1000-1006, 2005.

232) TNO study on the effects of GSM and UMTS signals on well-being and cognition. The Hague, Health Council of the Netherlands, 2004.
On-line at: http://www.gr.nl/pdf.php?ID=1042


Copyright Notice

This FAQ is Copyright©, 1996-2012 by John Moulder, Ph.D. and the Medical College of Wisconsin, and is made available as a service to the Internet community.

Portions of this FAQ were derived from the following articles, and are covered by the Copyright on those articles:

  • KR Foster, LS Erdreich, JE Moulder: Weak electromagnetic fields and cancer in the context of risk assessment. Proc IEEE, 85:733-746, 1997.
  • JE Moulder: Power-frequency fields and cancer. Crit Rev Biomed Eng 26:1-116, 1998.
  • JE Moulder, LS Erdreich, RS Malyapa, J Merritt, WF Pickard, Vijayalaxmi: Cell phones and cancer: What is the evidence for a connection? Radiat. Res., 151:513-531, 1999.
  • KR Foster, JE Moulder: Are mobile phones safe? IEEE Spectrum, August 2000, pp 23-28.
  • KR Foster, JE Moulder: Mobiles et cancer, un vrai casse-tête. La Recherche 337:39-47, 2000.
  • KR Foster, P Vecchia, JE Moulder: Effetti sulla salute dei telefoni mobili. AEI 87:36-41, 2000.
  • KR Foster, PJ Riu, JE Moulder: Efectos de los teléfonos móviles en la salud: Nuevas evidencia. Mundo Electronico, February 2001, pp. 34-39.
  • KR Foster, JE Moulder: Teléfonos móviles y cancer cerebral. Mundo Cientifico, Dec. 2000.
  • JE Moulder: Radiaciones de Radiofrecuencias y Cancer: Efectos Biologicos y Posibles Mecanismos. In: P. Gil-Loyzaga and A. Ubeda Eds., Ondas Electromagneticas y Salud, Informes Sanitarios, Siglo XXI, No. 1, Madrid, Spain, pp: 287-336, 2002.
  • JE Moulder: Mobile phones and cancer. Radiat Prot Austral 19:87-95, 2003.
  • JE Moulder, KR Foster, LS Erdreich, JP McNamee: Mobile phones, mobile phone base stations, and cancer: A review. Int J Rad Biol 81:189-203, 2005.

Permission is granted to copy and redistribute this document electronically and in print form as long as it is unmodified. This FAQ may not be sold in any medium, including electronic, CD-ROM, or database, or published in print, without the explicit, written permission of John Moulder.


 

Medical College of Wisconsin
8701 Watertown Plank Road
Milwaukee, WI 53226
(414) 955-8296
Directions & Maps
© 2014

Page Updated 10/07/2014
Top